NAMD, recipient of a 2002 Gordon Bell Award and a 2012 Sidney Fernbach Award, is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems. Based on Charm++ parallel objects, NAMD scales to hundreds of cores for typical simulations and beyond 500,000 cores for the largest simulations. NAMD uses the popular molecular graphics program VMD for simulation setup and trajectory analysis, but is also file-compatible with AMBER, CHARMM, and X-PLOR. NAMD is distributed free of charge with source code. You can build NAMD yourself or download binaries for a wide variety of platforms. Our tutorials show you how to use NAMD and VMD for biomolecular modeling.

Search all NAMD resources:

Other Spotlights 

Spotlight: May the Force Field Be With You (Sept 2013)

The Force Field Toolkit

image size: 307.6KB

Structural biologists are increasingly turning to simulation methods to investigate the connections between molecular structure and biological function. Classical molecular dynamics (MD) simulations, such as those performed by the simulation software NAMD, rely on potential energy functions requiring parameters to describe atomic interactions within the molecular system. While these parameters are available for the most commonly simulated biopolymers (e.g., proteins, nucleic acids, carbohydrates), many small molecules and other chemical species lack adequate descriptions. The complexity of developing these parameters severly restricts the application of MD technologies across many fields, including most notably drug discovery. Recently, researchers have developed software, the Force Field Toolkit (ffTK), that greatly reduces these limitations by facilitating the development of parameters directly from first principles. ffTK, distributed as a plugin for the molecular modeling softare VMD, addresses both theoretical and practical aspects of parameterization by automating tedious and error-prone steps, performing multidimensional optimizations, and providing quantitative assessment of parameter performance--all from within an easy-to-use graphical user interface. Additional information on ffTK, including documentation and screencast tutorials, can be found here.

Overview

Why NAMD? (in pictures)
How to Cite NAMD
Features and Capabilities
Performance Benchmarks
Publications and Citations
Credits and Development Team

Availability

Read the License
Download NAMD Binaries (also VMD)
Build from Source Code - Git access now available
Run at NCSA, SDSC, NICS, or Texas

Training

Enhanced Sampling and Free-Energy Workshop (Sept 10-14, 2018)
NAMD Developer Workshop in Urbana (June 11-12, 2018)
"Hands-On" Workshop in Pittsburgh (May 21-25, 2018)
Charm++ Workshop in Urbana (April 11-12, 2018)
"Hands-On" QM/MM Simulation Workshop (April 5-7, 2018)
Enhanced Sampling and Free-Energy Workshop (Sept 25-29, 2017)
"Hands-On" Workshop in Pittsburgh (May 30-June 2, 2017)
NAMD Developer Workshop in Chicago (May 22-23, 2017)
Charm++ Workshop in Urbana (April 17-19, 2017)
"Hands-On" Workshop in Urbana (April 17-21, 2017)
PRACE School on HPC for Life Sciences (April 10-13, 2017)
Older "Hands-On" Workshops

Support

Having Problems with NAMD?

NAMD Wiki (Recent Changes)
  
NAMD-L Mailing List (Archive)
  
Tutorial-L Mailing List (Archive)
  

Mailing List Issues for Yahoo.com Addresses

Announcements

NAMD 2.13 New Features
One-click NAMD/VMD in the cloud
QM/MM Interface to MOPAC and ORCA
QwikMD GUI Released in VMD 1.9.3
NAMD 2.12 New Features
NAMD 2.12 Release (Dec 2016)
2016 User Survey Report
Previous Announcements

Documentation

NAMD 2.12 User's Guide
   
  (also 773k HTML or 1.1M PDF)
NAMD 2.12 Release Notes
Running Charm++ Programs (including NAMD)
Running GPU-Accelerated NAMD (from NVIDIA)
Introductory NAMD Tutorials
All NAMD & VMD Tutorials
  

Related Codes, Scripts, and Examples
NAMD Wiki (Recent Changes)
Older Documentation

News

Supercomputing HIV-1 Replication
Computational Microscope Gets Subatomic Resolution
Early Science Project on First US Exascale Machine
Opening New Frontiers in the Battle Against HIV/AIDS
HIV Capsid Interacting with Environment
Assembling Life's Molecular Motor
Membrane Channel Made of DNA Origami
NAMD Paper Has 6000 Citations
Antibiotic Resistance Through Efflux Pumps
Membrane Protein Breakthrough
Massive Flu Virus Simulations
Ion Channels in General Anesthesia
How HIV Defeats Cellular Defender
Older News Items