MDFF for cryo-EM

The molecular dynamics flexible fitting (MDFF) method can be used to flexibly fit atomic structures into density maps. The method consists of adding external forces proportional to the gradient of the density map into a molecular dynamics (MD) simulation of the atomic structure.

xMDFF for X-ray Crystallography

Recently, we have developed a new MDFF-based approach, xMDFF, for determining structures from such low-resolution crystallographic data. xMDFF employs a real-space refinement scheme that flexibly fits atomic models into an iteratively updating electron density map. It addresses significant large-scale deformations of the initial model to fit the low-resolution density.

Use the menu above to navigate the MDFF website. For examples of MDFF applications, visit the websites on Mechanisms of Protein Synthesis by the Ribosome, Dynamics of Protein Translocation, Molecular Dynamics of Viruses, and Intrinsic Curvature Properties of Photosynthetic Proteins in Chromatophore.

Previous News 

Recent News and Announcements: Structure of HIV (May 2013)

The capsid of the human immunodeficiency virus type 1 (HIV-1), the major cause of AIDS, has recently had its full atomic structure determined. This discovery was made in part through the use of MDFF and marks the largest structure ever determined utilizing MDFF, at over 3 million atoms. This feat was made possible due to the performance and scalability of NAMD which MDFF is built into. This integration with NAMD allows MDFF to be run on a wide variety of platforms, including large supercomputers such as BlueWaters which was used for simulating the HIV capsid. In addition, due to the MD based nature of MDFF, the capsid structure could be immediately used for the additional simulations which took place after the initial fitting. More information is available in this highlight.

Spotlight: xMDFF Enhances X-ray Structures (Aug 2014)

xMDFF

image size: 151.9KB
made with VMD

For many, the word 'X-ray' conjures up the images of white bones on black backgrounds hanging on the wall of a doctor's office. However, X-rays have played another important role for the past 100 years through their use in the determination of chemical structures at atomic level detail, starting with the first ever structure of table salt in 1924. Since then, the diffraction properties of X-rays, when shone on a crystal, have been used to solve increasingly large and complex structures including those of biological macromolecules found inside living cells. X-ray crystallography has become the most versatile and dominant technique for determining atomic structures of biomolecules, but despite its strengths, X-ray crystallography struggles in the case of large or flexible structures as well as in the case of membrane proteins, either of which diffract only at low resolutions. Because solving structures from low-resolution data is a difficult, time-consuming process, such data sets are often discarded. To face the challenges posed by low-resolution, new methods, such as xMDFF (Molecular Dynamics Flexible Fitting for X-ray Crystallography) described here, are being developed. xMDFF extends the popular MDFF software originally created for determining atomic-resolution structures from cryo-electron microscopy density maps (see the previous highlights Seeing Molecular Machines in Action, Open Sesame, Placing New Proteins, and Elusive HIV-1 Capsid). xMDFF provides a relatively easy solution to the difficult process of refining structures from low-resolution data. The method has been successfully applied to experimental data as described in a recent article where xMDFF refinement is explained in detail and its use is demonstrated. Together with electrophysiology experiments, xMDFF was also used to validate the first all-atom structure of the voltage sensing protein Ci-VSP, as also recently reported. More on our MDFF website.