From: JC Gumbart (gumbart_at_ks.uiuc.edu)
Date: Thu Apr 17 2014 - 12:48:05 CDT

Nothing stands out as clearly flawed in your script. Like with any coding problem, it’s often useful to try to find the first instance of the weird behavior, i.e., where in the workflow does the divergence occur?

JC

On Apr 16, 2014, at 4:06 PM, Jeremiah Babcock <zhc605_at_my.utsa.edu> wrote:

> Hello,
>
> I wrote a script for calculating the second order Legendre polynomial time correlation function for selected atomic vectors for the form < P2[u(t)*u(t+T)]>. My problem is that depending on the precision I select, my output is not dependable. For precision <=4, I get odd outputs for each frame:
>
> Precision 4:
> 0.1433
> 0.1433
> 0.1433
> 0.1433
> ...
>
>
> Precision 3:
> 0.01433
> 0.01433
> 0.01433
> 0.01433
> ...
>
>
> and so forth. For >4, I get good numbers, but regardless of which atoms I select, it always returns the same output values. This can not be correct, because some residues diffuse faster than others.
>
> I'm not a coding expert, but I've put a lot of time into researching this. I admit that I can't figure it out, so I'm moving on to Ambertools ptraj. However, I've posted this in the hope that maybe it can be saved and it can be used to compare outputs from ptraj. Thank you for your time.
>
> Jeremiah Babcock
>
>
> #####################################################
>
> # Write a file where the coordinates of selected atoms are saved
> set file [open ExcitationDipole.dat w]
> set nfram [molinfo top get numframes]
> set first [atomselect top "index 1"]
> set second [atomselect top "index 2"]
>
> # Calculation of normalized vectors between #
> # the selected atomic coordinates #
>
> set tcl_precision 5
> global M_PI
>
> for {set j 0} {$j < $nfram } { incr j } {
> $first frame $j
> $second frame $j
> $first update
> $second update
>
> puts "Frame ............................ $j"
> puts " "
>
> set time [expr $j]
> set r1 [lindex [$first get {x y z}] 0]
> set r2 [lindex [$second get {x y z}] 0]
> set diff [vecsub $r2 $r1]
> set mu [vecnorm $diff]
> set type [list $mu]
> puts $file "$type"
> puts "$time $mu"
> puts " "
> }
>
> close $file
>
> # Reading coordinates
>
> set file [open ExcitationDipole.dat r]
> while { [gets $file line] != -1 } {
> lappend templist $line
> }
> close $file
>
> set lc [llength $templist]
> unset templist
>
> set data " "
> set file [open ExcitationDipole.dat r]
> while { [gets $file line] != -1 } {
> set data "$data $line"
> }
> close $file
>
> # $endlag represents the final coordinate frame step
> # taken from the list length $lc
> set endlag $lc
> set lc [expr $lc -1]
>
> # procedure to calculate average of list
>
> proc avg {dataarray} {
> global $dataarray
> set numdata [array size $dataarray]
> set total 0
> for {set k 0} {$k < $numdata} {incr k} {
> set total [expr "$[list $dataarray]($k)" + $total]
> }
> return [expr $total/$numdata]
> }
>
> for {set k 0} {$k <= $lc} {incr k} {
> set angle($k) [lindex $data [expr $k]]
> }
> unset data
>
> # Write a file with output values
> set file1 [open Anisotropy.dat w]
>
> # Second order Legendre time correlation function
> # calculation <P2[u(t)*u(t+T)]>
>
> for {set lag 0} {$lag <= $endlag} {incr lag} {
>
> for {set k 0} {$k < [expr $lc-$lag]} {incr k} {
> set data1($k) $angle($k)
> set data2($k) $angle([expr $k+$lag])
> set muDot($k) [vecdot $data1($k) $data2($k)]
> set P2($k) [expr (3*pow($muDot($k),2)-1)/2]
> }
> set meanP2 [avg P2]
> puts "$lag $meanP2"
> puts $file1 "$lag $meanP2"
> }
>
> close $file1
>
> #####################################################