Bier, David; Rose, Rolf; Bravo-Rodriguez, Kenny; Bartel, Maria; Ramirez-Anguita, Juan Manuel; Dutt, Som; Wilch, Constanze; Klaerner, Frank-Gerrit; Sanchez-Garcia, Elsa; Schrader, Thomas; Ottmann, Christian
Molecular tweezers modulate 14-3-3 protein-protein interactions
NATURE CHEMISTRY, 5:234-239, MAR 2013

Supramolecular chemistry has recently emerged as a promising way to modulate protein functions, but devising molecules that will interact with a protein in the desired manner is difficult as many competing interactions exist in a biological environment (with solvents, salts or different sites for the target biomolecule). We now show that lysine-specific molecular tweezers bind to a 14-3-3 adapter protein and modulate its interaction with partner proteins. The tweezers inhibit binding between the 14-3-3 protein and two partner proteins-a phosphorylated (C-Raf) protein and an unphosphorylated one (ExoS)-in a concentration-dependent manner. Protein crystallography shows that this effect arises from the binding of the tweezers to a single surface-exposed lysine (Lys214) of the 14-3-3 protein in the proximity of its central channel, which normally binds the partner proteins. A combination of structural analysis and computer simulations provides rules for the tweezers' binding preferences, thus allowing us to predict their influence on this type of protein-protein interactions.

DOI:10.1038/NCHEM.1570

Find full text with Google Scholar.