Lin, Tu-Liang; Song, Guang
Efficient mapping of ligand migration channel networks in dynamic proteins
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 79:2475-2490, AUG 2011

For many proteins such as myoglobin, the binding site lies in the interior, and there is no obvious route from the exterior to the binding site in the average structure. Although computer simulations for a limited number of proteins have found some transiently open channels, it is not clear if there exist more channels elsewhere or how the channels are regulated. A systematic approach that can map out the whole ligand migration channel network is lacking. Ligand migration in a dynamic protein resembles closely a well-studied problem in robotics, namely, the navigation of a mobile robot in a dynamic environment. In this work, we present a novel robotic motion planning inspired approach that can map the ligand migration channel network in a dynamic protein. The method combines an efficient spatial mapping of protein inner space with a temporal exploration of protein structural heterogeneity, which is represented by a structure ensemble. The spatial mapping of each conformation in the ensemble produces a partial map of protein inner cavities and their inter-connectivity. These maps are then merged to form a super map that contains all the channels that open dynamically. Results on the pathways in myoglobin for gaseous ligands demonstrate the efficiency of our approach in mapping the ligand migration channel networks. The results, obtained in a significantly less amount of time than trajectory-based approaches, are in agreement with previous simulation results. Additionally, the method clearly illustrates how and what conformational changes open or close a channel.

DOI:10.1002/prot.23071

Find full text with Google Scholar.