Liang Hao; Liu Tao; Chen FangJin; Liu ZhaoQing; Liu ShaoJun
A full-length 3D structure for MAPK/ERK kinase 2 (MEK2)
SCIENCE CHINA-LIFE SCIENCES, 54:336-341, APR 2011

As a pivotal signal pathway, the Ras/Raf/MEK/ERK cascade can be activated by multiple extracellular stimuli and can transmit signals to diverse substrates. It remains to be elucidated how so many different signals can be variously transferred by only two MEK molecules (MEK1 and MEK2). Because of technological limitations the complete structures of the MEKs are still unavailable. Here, we report the full-length structure of MEK2 obtained by homology modeling and molecular dynamics simulations. The simulations show that the N-terminal part of MEK2 is highly flexible and this flexibility may enable MEK2 to interact with ERKs and other ligands in diverse manners that correspond to various upstream signals and downstream consequences.

DOI:10.1007/s11427-011-4156-z

Find full text with Google Scholar.