Geppert, Tim; Hoy, Benjamin; Wessler, Silja; Schneider, Gisbert
Context-Based Identification of Protein-Protein Interfaces and "Hot-Spot" Residues
CHEMISTRY & BIOLOGY, 18:344-353, MAR 25 2011

Reliable determination of protein-protein interaction sites is of critical importance for structure-based design of small molecules modulating protein function through macromolecular interfaces. We present an alignment-free computational method for prediction of protein-protein interface residues. The method ("iPred") is based on a knowledge-based scoring function adapted from the field of protein folding and small molecule docking. Based on a training set of 394 hetero-dimeric proteins iPred achieves sustained accuracy on an external unbound test set. Prediction robustness was assessed from more than 1500 diverse complexes containing homo- and hetero-dimers. The technique does not rely on sequence conservation, so that rapid interface identification is possible even for proteins for which homologs are unknown or lack conserved residue patterns in interface region. Functional "hot-spot" residues are enriched among the predicted interface residues, rendering the method predestined for nnacromolecular binding site identification and drug design studies aiming at modulating protein-protein interaction that might influence protein function. For a comparative structural model of peptidase HtrA from Helicobacter pylori, we performed mutation studies for predicted hot-spot residues, which were confirmed as functionally relevant for HtrA activity or oligomerization.

DOI:10.1016/j.chembiol.2011.01.005

Find full text with Google Scholar.