Broemstrup, Torben; Reuter, Nathalie
Molecular Dynamics Simulations of Mixed Acidic/Zwitterionic Phospholipid Bilayers
BIOPHYSICAL JOURNAL, 99:825-833, AUG 4 2010

Anionic lipids are key components in the cell membranes. Many cell-regulatory and signaling mechanisms depend upon a complicated interplay between them and membrane-bound proteins. Phospholipid bilayers are commonly used as model systems in experimental or theoretical studies to gain insight into the structure and dynamics of biological membranes. We report here 200-ns-long MD simulations of pure (DMPC and DMPG) and mixed equimolar (DMPC/DMPG, DMPC/DMPS, and DMPC/DMPA) bilayers that each contain 256 lipids. The intra- and intermolecular interaction patterns in pure and mixed bilayers are analyzed and compared. The effect of monovalent ions (Na(+)) on the formation of salt-bridges is investigated. In particular, the number of Na(+)-mediated clusters in the presence of DMPS is higher than with DMPG and DMPA. We observe a preferential clustering of DMPS (and to some extent DMPA) lipids together rather than with DMPC molecules, which can explain the phase separation observed experimentally for DMPC/DMPS and DMPC/DMPA bilayers.

DOI:10.1016/j.bpj.2010.04.064

Find full text with Google Scholar.