TCB Publications - Abstract

Anton Arkhipov, Wouter H. Roos, Gijs J. L. Wuite, and Klaus Schulten. Elucidating the mechanism behind irreversible deformation of viral capsids. Biophysical Journal, 97:2061-2069, 2009. (PMC: 2756377)

ARKH2009A Atomic force microscopy (AFM) has recently provided highly precise measurements of mechanical properties of various viruses. However, molecular details underlying viral mechanics remain unresolved. Here we report AFM nanoindentation experiments on T=4 hepatitis B virus (HBV) capsids combined with coarse-grained molecular dynamics simulations, which permit interpretation of experimental results at the molecular level. The force response of the indented capsid recorded in simulations agrees with experimental observations. In both experiments and simulations, irreversible capsid deformation is observed for deep indentations. Simulations show the irreversibility to be due to local bending and shifting of capsid proteins, rather than their global rearrangement. These results emphasize the viability of large capsid deformations without significant changes of the mutual positions of HBV capsid proteins, in contrast to the stiffer capsids of other viruses, which exhibit more extensive contacts between their capsid proteins than in the case of HBV.

Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: Supplemental Material ( 1.1MB) - Supplementary PDF, Supplemental Material ( 3.1MB) - Supplementary movie S1, Supplemental Material ( 3.8MB) - Supplementary movie S2, PDF ( 1.5MB), Journal