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Supporting Material

1 Supporting Movies

• Movie 1 shows a shape-based coarse-grained (SBCG) simulation with three rounds
of AFM nanoindentations for Zmax = 0.35R (the last round is continued up to
Zmax = 1.25R).

• Movie 2 shows an SBCG simulation with three rounds of AFM nanoindentations
for Zmax = 1.25R.
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2 Supporting Methods

Parameterization of bonded interactions

Parameters for bonded interactions (Ki, Li, Mk, and Θk in Eq. 1 of the main text)
are obtained from an all-atom simulation of an HBV capsid monomer in water, using the
Boltzmann inversion method. The Boltzmann inversion for harmonic potentials estimates
the CG parameters using the average of the bond length (angle) and its root mean square
deviation (RMSD) obtained from the all-atom simulation (1–4):

LBI
i = 〈Ri〉,

KBI
i =

kBT

2 (〈R2
i 〉 − 〈Ri〉2)

,

ΘBI
k = 〈θk〉,

MBI
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kBT

2 (〈θ2
k〉 − 〈θk〉2)

, (S1)

where kB is the Boltzmann constant, T is the temperature, and 〈...〉 designates averaging
over the simulation. The superscript “BI” stands for “Boltzmann inversion”.

After using the Boltzmann inversion result as an initial guess for the parameters of
the SBCG model, we scale those parameters uniformly over i and k until the stiffness of
the SBCG model matches that of the all-atom model (3) (see Fig. S1). The comparison
is between the all-atom simulations of an HBV monomer and the SBCG simulation of
the same monomer. In Fig. S1, the results of the Boltzmann inversion for the all-atom
simulation and two SBCG simulations are shown, being reported as LBI

i , ΘBI
k , KBI

i , and
MBI

k obtained through Eqs. S1. As such, these results correspond to the average (over
simulated time) bond lengths, angles, and bond and angle RMSDs, respectively, i.e.,
they characterize the local stiffness of the protein. The first SBCG simulation (red) uses
the parameters from the Boltzmann inversion of the all-atom simulation, but one finds
that in this CG simulation the angles in the monomer model are too stiff. The second
SBCG simulation (cyan) uses the same parameters as the first one but for the angle force
constants, which are uniformly scaled by 0.3. As a result, the monomer stiffness in the
second SBCG simulation is close to that in the all-atom simulation, and therefore the
second set of the bonded parameters is used for all further SBCG simulations.

The inter-monomer bonds are assigned the Li values based on the distances between
the corresponding bead sites in the native capsid structure, and Ki values are chosen as
averages of the Ki values for the monomer.
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Figure S1: SBCG model of an HBV capsid protein. Two monomers forming a dimer are
shown. Each monomer consists of 15 CG beads, named A1 to A15. Tuning of parameters
for bonded interactions is illustrated here. The parameters plotted are obtained from all-
atom and CG simulations of a monomer using Boltzmann inversion, i.e., the parameters
characterize the average bond lengths and angles, as well as their RMSD, as recorded
in the respective simulations. Black, all-atom simulation; red, SBCG simulation with
parameters obtained using the Boltzmann inversion from the all-atom simulation; cyan,
SBCG simulation with scaled parameters.
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Figure S2: Choice of LJ interactions for the SBCG model of the HBV capsid. Two
monomers (cyan and pink) forming a dimer are shown. All beads within 24 Å from the
cyan monomer are highlighted in purple. Bead pairs A5-A10 and A7-A9 exemplify cases
for which unique LJ interaction radii σmn can or cannot be set, respectively. For all
possible A5-A10 pairs, the distances between beads A5 and A10 from different monomers
within the 24 Å cutoff are close to each other (20.5 or 21.6 Å), and a single value of σmn

can be chosen to describe these distances approximately. Note that the example shown
here is for one monomer only. The actual LJ parameters are chosen based on the analysis
of the whole T=4 capsid structure, where monomers are found in four non-equivalent
orientations. Then, one finds that for the pairs A5-A10 a distance of 16.5 Å occurs with
the same frequency as 20.5 and 21.6 Å, and σmn is set to the average, 19.5 Å. For A7-
A9 pairs, the distances one finds are far off from each other, namely, 12.6 and 22.7 Å.
Therefore, a specific LJ interaction between beads A7 and A9 is not established.
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Figure S3: SBCG simulations of an HBV capsid with various values of the LJ parame-
ters. Shown are several examples from the set of sampled parameter values; the sampled
parameters are the LJ energy of specific interactions ES and the uniform LJ radius of
non-specific interactions σU . The simulated system contains only the capsid and ions, but
no substrate or AFM tip. a, Radial density of the capsid at the end of simulations. b,
Average radius of the capsid as a function of time in each simulation. Black and gray
curves correspond to the properties computed for the all-atom native capsid structure
and for the SBCG model of that structure, respectively. In b, the black and gray lines
designate the average radii for the respective static structures.

Non-bonded interactions

Once the bonded parameters for the SBCG monomer model have been tuned, we consider
the non-bonded parameters, which have the strongest influence on the shape and size of
the HBV capsid. The non-bonded parameters (Eq. 1 of the main text) are charges qm,
dielectric constant ε, and LJ parameters εmn and σmn for bead pairs m-n. The tuning is
done by running multiple SBCG simulations of a complete capsid (without the substrate
and AFM tip) with different sets of the non-bonded parameters values, and comparing the
size and mass distribution of the capsid in the simulations to those of the native capsid
(the latter is known to be stable).

The dielectric constant ε should be 80 for bulk water and 1 for direct unscreened
electrostatic interactions; either of the two values, and some in between, have been used
in previous applications of SBCG and other CG models (1–8). For the tuning simulations
of HBV capsid, we have tried the value of ε to be set to 1 or 15, as well as setting all charges
to 0, together with varying the LJ parameters as described below. Either setting of the
electrostatic interactions have been found to result in approximately the same behavior of
the SBCG capsid, from which we conclude that the large-scale electrostatic interactions
are not important for this system, as compared to the SBCG LJ interactions (the latter
strongly influence the behavior of the capsid, as we discuss below). Therefore, we have
chosen to use an intermediate value of ε = 15 for our subsequent SBCG simulations.
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Tuning the LJ parameters εmn and σmn has proven to be the most difficult and cru-
cial part of the SBCG parameterization. In previous SBCG applications (3, 4), these
parameters for a pair of beads m and n were approximated as εmn =

√
εmεn, and

σmn = 0.5(σm +σn), which is a common choice for all-atom simulations. Here, εm and σm

are the parameters for individual beads, the first being set based on the amount of the
hydrophobic solvent-accessible surface area of the Voronoi cell of the bead, and the second
based on the Voronoi cell’s gyration radius. However, interactions between all monomers
in the HBV capsid structure have proven to be very specific, as the dimers forming the
capsid are rather sparsely connected through precisely positioned salt bridges and clusters
of overlapping hydrophobic residues, mainly around the 3-fold and 2-fold symmetry axes
of the capsid (9). Fig. 1b in the main text shows that in the SBCG representation the
inter-monomer contacts are indeed loose. The approach for setting the LJ parameters as
described above has been unsuccessful in maintaining the correct capsid size and mass
distribution in SBCG simulations. After trying 15 simulations with different maximal
strengths for εm and different additions to the gyration radius in obtaining σm, it became
clear that such SBCG model lacks enough specificity to maintain the appropriate capsid
geometry.

Thus, we assigned the LJ parameters for specific pairs of the CG beads, depending on
the distance between the two beads within the pair in the native capsid. The choice of
such interactions is illustrated in Fig. S2. Since the capsid is composed of 240 identical
monomers, each consisting of the same 15 beads, it is impossible to specify interactions
between each bead in every monomer with each bead in every other monomer. This
approach would be also impractical, as ∼3,6002/2 interactions would have to be specified,
and most of them would be very far-range, making the force-field highly artificial.

Instead, we consider first all beads in the native capsid that are within a certain cutoff
distance from any bead of a given name, e.g., A5 (see Fig. S2). The average gyration radius
of the protein piece represented by a CG bead is 6 Å, corresponding to the bead “size”
of S = 12 Å, while the common cutoff distance in all-atom simulations is Rcutoff

AA = 12 Å
or less; thus, the cutoff distance for choosing the beads is set to Rcutoff

CG = S + Rcutoff
AA , or

24 Å. For each pair of bead types that are closer than 24 Å (e.g., A5 and A10 in Fig. S2)
we consider all possible distances occurring in the native capsid. The distances within
one monomer are not taken into account, since the interactions within the monomer are
dominated by the bonded terms. For some pairs, several distances that are quite widely
distributed are found, such as 12.6 and 22.7 Å for the pair A7-A9 in Fig. S2. No specific
interactions are assigned to those bead pairs. For others, all distances found fall within
a tight range, e.g., distances of 16.5, 20.5, and 21.6 Å occur with the same frequency for
the pair A5-A10. According to the average radius of a CG bead, 6 Å, we consider all
the distances to fall within a “close range” if they are all within 6 Å from each other.
In such case, a specific LJ interaction is assigned to the pair m − n, with parameters
εmn = ES (where the “specific interaction energy” ES is a constant, uniformly set up for
all such specific interactions), and σmn is set to the average of the distances found for the
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pair. Eleven such pairs of bead types have been identified, and specific interactions have
been assigned for them. For all other pairs, we set LJ interactions to be non-specific,
namely, εmn = 0.01 kcal/mol and σmn = σU , where the uniform non-specific interaction
radius σU is the same for all pairs. With such settings, for example, the interaction
parameters for the pair A5-A10 are εmn = ES and σmn = 19.5 Å, whereas for A7-A9 they
are εmn = 0.01 kcal/mol and σmn = σU .

Due to the choice εmn = 0.01 kcal/mol, attraction between the beads interacting
through a non-specific LJ potential is negligible in comparison with the thermal energy
kBT ≈ 0.6 kcal/mol (kB is the Boltzmann constant and T = 300K is the temperature), so
that the non-specific interactions do not drive the capsid conformation towards a wrong
energy minimum. On the other hand, this choice still allows for the repulsion if two beads
are too close to each other, accounting for the size of the protein pieces represented by
the beads. Conversely, the specific LJ interactions mainly account for maintaining the
appropriate capsid contacts.

The resulting model has two free parameters, the specific interaction energy ES, which
determines the strength of interaction between all beads for which a specific interaction
is introduced, and the non-specific interaction radius σU , which describes the range of
interaction between all beads which interact non-specifically. These parameters have
been tuned in a series of SBCG simulations that sampled all permutations of ES = 5, 10,
20, 30, and 50 kcal/mol, and σU = 8, 9, 10, 11, and 12 Å. For each of the 25 simulations,
we investigate the average radius of the capsid as a function of time and the radial mass
distribution averaged over the last 100 ns at time t = 4µs, as shown for several examples in
Fig. S3. The parameters producing the results in best agreement with the native capsid
structure are σU = 10 Å and ES = 10 − 20 kcal/mol. Checking also the maximal and
minimal radii of the capsid, we conclude that σU = 10 Å and ES = 10 kcal/mol are the
most suitable settings.

3 Supporting Results

3.1 Effect of the AFM pushing velocity on the FZ curve

In the SBCG simulations of AFM nanoindentation, the AFM tip is moved with a constant
velocity, which is achieved through SMD by applying a force to the center of mass of the
hemisphere that represents the tip. The forces observed in SMD simulations are typically
orders of magnitude higher than those in the respective experiments, since the time scales
of all-atom simulations are normally 10-100 ns, versus 0.1 s or longer for stretching/pushing
experiments with biomolecules. With our SBCG model, the simulation time scale reaches
10µs, which is still much faster than the experiment, but the agreement between the
simulated and experimental FZ curves suggests that such SMD velocity is already slow
enough for an adequate comparison.

All simulations described in the main text are performed with the SMD velocity v =
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Figure S4: FZ curves for various velocities of the AFM tip in simulations. All curves are
for pushing along the 5-fold symmetry axis of the HBV capsid. Red, average over five
simulations with v = 23 Å/µs (normal velocity used in simulations). Black, green, and
orange curves are for individual simulations with varying velocities.
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23 Å/µs, but additional simulations have been performed with SMD velocities varied from
2.3 Å/µs to 230 Å/µs. FZ curves for AFM nanoindentations of the HBV T=4 capsid are
shown in Fig. S4. All simulations for which the results are shown have been performed with
pushing along the 5-fold symmetry axis of the capsid. The average over five simulations
with v = 23 Å/µs is shown in red. The simulation with a 10 times slower pushing,
v = 2.3 Å/µs, results in an FZ curve (black) that is close to that with v = 23 Å/µs.
Due to slower pushing, fluctuations are more prominent for the black curve than for
individual simulations with v = 23 Å/µs; FZ curves for all 15 individual simulations with
v = 23 Å/µs are shown in Figs. S5 and S6.

A faster pushing with v = 70 Å/µs (green in Fig. S4) produces FZ curve that is
slightly higher, but overall is in a close overlap with the v = 23 Å/µs curve (within the
scatter of the curves for individual simulations with v = 23 Å/µs). However, even faster
pushing, v = 230 Å/µs, results in the FZ curve (orange) that is noticeably above the
v = 23 Å/µs curve. The curve follows approximately the same shape, but is shifted
upwards by ∼300 pN, which occurs even before the AFM tip reaches the capsid. This
additional force is due to the drag force from the solvent, which is represented implicitly
using the Langevin equation (Eq. 3 in the main text). Indeed, the drag force experienced
by an object of mass mtot moving with a uniform velocity v is, according to the Langevin
equation, Fv = mtotγv. The AFM tip consists of ∼2,000 beads, each with the mass of
2 kDa, i.e., mtot ≈ 4MDa; γ = 2ps−1, and v = 230 Å/µs, which gives a drag force of
Fv ≈ 300 pN. Three times slower pushing with v = 70 Å/µs corresponds to the drag force
of ∼100 pN, which explains why the respective curve is somewhat higher than the one
with v = 23 Å/µs. For the velocity of v = 23 Å/µs, commonly used in our simulations,
the drag force is about 30 pN, which is significantly below the noise level in individual
simulations.

Thus, simulations with a ten times slower pushing produces the FZ curve that is similar
to those from simulations with v = 23 Å/µs, and three times faster pushing also produces
a similar FZ curve, while 10 times faster pushing leads to discrepancies. This finding
shows that at v = 23 Å/µs the pushing reaches an adiabatic regime, i.e., it is unlikely
that in the case of slower pushing the capsid exerts lower forces on the AFM tip. One
extrapolates this conclusion to assume that the results of v = 23 Å/µs simulations apply
to the experimental situation, where the AFM movement is ∼10,000 times slower. Due to
computational expense, we therefore choose v = 23 Å/µs (rather than smaller velocities)
as a regular pushing velocity for the simulations that sample the AFM nanoindentations.
We note that in the complete all-atom representation even slower pushing may be required
to reach the adiabatic regime, due to the common effect of the CG modeling, namely, that
relaxation processes are usually much faster in CG than in all-atom representation because
of elimination of many degrees of freedom that contribute to friction.

9



3.2 Repeated pushing in individual simulations

FZ curves for three repeated rounds of AFM pushing in individual simulations, 15 such
rounds for Zmax = 0.35R and 15 for Zmax = 1.25R, are shown in Figs. S5 and S6 (c.f. FZ
curves averaged over all simulations with pushing along one symmetry axis in Fig. 5 of
the main text). Deformations of the capsid in each of these simulations, for the maximal
indentation during the first round of pushing, as well as for the relaxation after the first
round, are demonstrated in Figs. S7 and S8.

The results from individual simulations confirm the conclusion stated in the main
text, that in simulations as well as in experiments, the FZ response of the HBV capsid
is reversible if the indentation is stopped at Zmax = 0.35R to 0.55R, and is irreversible
for larger indentations. Slight capsid deformations are observed for simulations with
Zmax = 0.35R even after the AFM is removed and the capsid relaxes, but the extent
of this deformation is rather minor, so that the FZ curves corresponding to repeated
pushing overlap with those for the first round within fluctuations. For Zmax = 1.25R,
the FZ curves and snapshots from simulations show that after the first round the capsid
remains deformed irreversibly. The FZ curves and snapshots for individual simulations
also support the observation described in the main text, that capsid deformation and
force response for indentations along the three different symmetry axes of the virus differ
noticeably from each other.
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Figure S5: FZ curves in individual simulations with Zmax = 0.35R, for three rounds of
repeated pushing. 1st round, black; 2nd round, red; 3rd round, green. The values are
averaged over 150 ns time windows (the error bars are corresponding RMSDs).
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Figure S6: FZ curves in individual simulations with Zmax = 1.25R, for three rounds of
repeated pushing. Colors and averaging are the same as in Fig. S5.
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Figure S7: Deformation of the capsid in each of 15 individual simulations with Zmax =
0.35R. The capsid is shown at the time of the maximal indentation, t = 4µs (first round
of pushing), and after the relaxation, t = 7µs, which follows the first round of pushing as
the AFM tip is retracted.
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Figure S8: Deformation of the capsid in each of 15 individual simulations with Zmax =
1.25R. The capsid is shown at the time of the maximal indentation, t = 9µs (first round
of pushing), and after the relaxation, t = 14µs, which follows the first round of pushing
as the AFM tip is retracted.
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3.3 Capsid energies in simulations with Zmax = 0.35R

Fig. S9 shows the energies of bonded, angle, and nonbonded interactions within the capsid,
as well as capsid-substrate interaction, for simulations with Zmax = 0.35R (c.f. Fig. 6a
of the main text, where the same values are shown for Zmax = 1.25R). After the first
pushing round (t > 4µs), all energies analyzed remain relatively constant. Indeed, for
t > 4µs these energies fluctuate slightly around their average taken over t > 4µs, within
the RMSD of the averaging, which is shown as a light blue shade around the deep blue
line in Fig. S9. The average over t > 4µs then gives a good measure of the level of the
energies arising during all times for simulations with Zmax = 0.35R, in contrast with the
Zmax = 1.25R case, where some of the energies change significantly due to the capsid
deformation. Thus, the average of the energies in the Zmax = 0.35R case over t > 4µs is
used as a base line for the comparison with the Zmax = 1.25R case in Fig. 3 of the main
text.
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Figure S9: Energies for various interactions in the HBV-AFM system in simulations with
Zmax = 0.35R. Black, average over all simulations with Zmax = 0.35R (error bars are the
averaging RMSDs). Blue, the average of the black curve over time t > 4 µs (light blue
shade, RMSD).

16



References

[1] Arkhipov, A., P. L. Freddolino, and K. Schulten. 2006. Stability and dynamics of virus
capsids described by coarse-grained modeling. Structure. 14:1767–1777.

[2] Arkhipov, A., P. L. Freddolino, K. Imada, K. Namba, and K. Schulten. 2006. Coarse-
grained molecular dynamics simulations of a rotating bacterial flagellum. Biophys. J.
91:4589–4597.

[3] Arkhipov, A., Y. Yin, and K. Schulten. 2008. Four-scale description of membrane
sculpting by BAR domains. Biophys. J. 95:2806–2821.

[4] Yin, Y., A. Arkhipov, and K. Schulten. 2009. Simulations of membrane tubulation by
lattices of amphiphysin N-BAR domains. Structure. 17:882–892.

[5] Shih, A. Y., P. L. Freddolino, A. Arkhipov, and K. Schulten. 2007. Assembly of lipopro-
tein particles revealed by coarse-grained molecular dynamics simulations. J. Struct.
Biol. 157:579–592.

[6] Shih, A. Y., S. G. Sligar, and K. Schulten. 2008. Molecular models need to be tested:
the case of a solar flares discoidal HDL model. Biophys. J. 94:L87–L89.

[7] Marrink, S. J., A. H. de Vries, and A. E. Mark. 2004. Coarse grained model for
semiquantitative lipid simulations. J. Phys. Chem. B. 108:750–760.

[8] Marrink, S. J., H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. de Vries. 2007.
The martini forcefield: coarse grained model for biomolecular simulations. J. Phys.
Chem. B. 111:7812–7824.

[9] Wynne, S. A., R. A. Crowther, and A. G. W. Leslie. 1999. The crystal structure of
the human hepatitis B virus capsid. Mol. Cell. 3:771–780.

17


