Qu, Tao; Verma, Devendra; Shahidi, Mehran; Pichler, Bernhard; Hellmich, Christian; Tomar, Vikas
Mechanics of organic-inorganic biointerfaces-Implications for strength and creep properties
MRS BULLETIN, 40:349-358, APR 2015

From the biological/chemical perspective, interface concepts related to the cell surface/synthetic biomaterial interface and the extracellular matrix/biomolecule interface have wide applications in medical and biological technologies. Interfaces also play a significant role in determining structural integrity and mechanical creep and strength properties of biomaterials. Structural arrangement of interfaces combined with interfacial interactions between organic and inorganic phases significantly affects the mechanical properties of biological materials, allowing for a unique combination of seemingly inconsistent properties, such as fracture strength and tensile strength being both high-as opposed to traditional engineering materials, which have high fracture strength linked to low tensile strength and vice versa. While there has been a tremendous amount of work focused on the effects of structural arrangements on biomaterial properties, both experimental and computational studies of the strength, deformation, and viscosity of the interface itself are limited to just a few systems. Even in such studies, the actual interface stress is rarely analyzed, and correlated to the overall material strength or creep properties. This article provides a focused overview of such studies in hard biological materials, followed by a new vision of how the results of interfacial molecular studies could be consistently linked to multiscale, micromechanics-based perceptions of hierarchical biological materials.

DOI:10.1557/mrs.2015.70

Find full text with Google Scholar.