Song, Minseok; Snyder, Mark A.; Mittal, Jeetain
Effect of molecular structure on fluid transport through carbon nanotubes
MOLECULAR PHYSICS, 112:2658-2664, OCT 18 2014

We perform molecular dynamics simulations to study the transport of geometrically modified water models through channels of carbon nanotube (CNT) membranes. We use two modifications to an existing water model (extended simple point charge SPC/E) as representative surrogates of molecular fluids: (1) bent model (model B) in which the HOH angle is varied while keeping the dipole moment constant by adjusting the OH bond length and (2) modified bent model (model MB) in which the HOH angle changes without any change in OH bond length thereby changing the dipole moment. Interestingly, we find that the fluid transport is a nonmonotonic function of the bond angle for both fluid models. This observed trend is not anticipated based on the fluid density as a function of the bond angle inside and outside of the nanotube channel. However, the average residence time of transmitted molecules through the channel provides an approximately inverse linear correlation with the observed flux, independent of the fluid model. Based on these correlations, we have developed an empirical design parameter connecting fluid transport through CNTs as a function of average occupancy (number of fluid molecules inside the nanotube) and the average residence time. Our results suggest that transport through carbon nanotubes can be sensitive to small changes in the structure of fluid molecules that can potentially be utilised for mixture separation.

DOI:10.1080/00268976.2014.903578

Find full text with Google Scholar.