Wei, Chenyu; Pohorille, Andrew
Flip-Flop of Oleic Acid in a Phospholipid Membrane: Rate and Mechanism
JOURNAL OF PHYSICAL CHEMISTRY B, 118:12919-12926, NOV 13 2014

Flip-flop of protonated oleic acid molecules dissolved at two different concentrations in membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine is studied with the aid of molecular dynamics simulations at a time scale of several microseconds. Direct, single-molecule flip-flop events are observed at this time scale, and the flip-flop rate is estimated at 0.20.3 mu s1. As oleic acid molecules move toward the center of the bilayer during flip-flop, they undergo gradual, correlated translational, and rotational motion. Rare, double-flipping events of two hydrogen-bonded oleic acid molecules are also observed. A two-dimensional free energy surface is obtained for the translational and rotational degree of freedom of the oleic acid molecule, and the minimum energy path on this surface is determined. A barrier to flip-flop of similar to 4.2 kcal/mol is found at the center of the bilayer. A two-dimensional diffusion model is found to provide a good description of the flip-flop process. The fast flip-flop rate lends support to the proposal that fatty acids permeate membranes without assistance of transport proteins. It also suggests that desorption rather than flip-flop is the rate-limiting step in fatty acid transport through membranes. The relation of flip-flop rates to the evolution of ancestral cellular systems is discussed.

DOI:10.1021/jp508163e

Find full text with Google Scholar.