Song, Zhen; Ming, Jie; Yang, Binsheng
The effect of metals on SDS-induced partially folded states of CopC
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 19:359-374, MAR 2014

In this work, the unfolding of CopC was used to elucidate details of the protein structure through different spectroscopic techniques. The interactions of CopC and its mutants with the anionic surfactant sodium dodecyl sulfate (SDS), guanidinium hydrochloride, and urea were monitored by fluorescence spectroscopy, far-UV circular dichroism spectroscopy, and fluorescence lifetime measurements. The interaction of SDS with CopC resulted in the formation of a partially folded intermediate. In this intermediate, the structure of the C-terminal is unfolded, whereas the N-terminal retains the native structure. Further, we have explored the effects of metals on the intermediate in aqueous surfactant. The results suggested that the Ag+ ion has a large effect on the unfolding induced by SDS. In addition, the binding capacity of the different unfolding degree protein toward Cu2+ indicated the high stability of the N-terminal. The protein-Cu2+ unfolding induced by guanidinium hydrochloride and urea caused the binding of Cu2+ to increase the stability of the N-terminal, which resulted in an intermediate in the unfolding process. The first transition corresponded to unfolding of the C-terminal, and the second transition was attributed to unfolding of the N-terminal. Furthermore, the anisotropy decay indicated that the motion of tryptophan occurred at a higher urea concentration, which suggested the high stability of the N-terminal. Steered molecular dynamics simulations also indicated that the structure of the N-terminal was rigid.

DOI:10.1007/s00775-013-1071-8

Find full text with Google Scholar.