Zhang, Yuebin; Liu, Li; Wu, Lei; Li, Shuai; Li, Fei; Li, Zhengqiang
Theoretical investigation on the diatomic ligand migration process and ligand binding properties in non-O-2-binding H-NOX domain
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 81:1363-1376, AUG 2013

The Nostoc sp (Ns) H-NOX (heme-nitric oxide or OXygen-binding) domain shares 35% sequence identity with soluble guanylate cyclase (sGC) and exhibits similar ligand binding property with the sGC. Previously, our molecular dynamic (MD) simulation work identified that there exists a Y-shaped tunnel system hosted in the Ns H-NOX interior, which servers for ligand migration. The tunnels were then confirmed by Winter et al. [PNAS 2011;108(43):E 881-889] recently using x-ray crystallography with xenon pressured conditions. In this work, to further investigate how the protein matrix of Ns H-NOX modulates the ligand migration process and how the distal residue composition affects the ligand binding prosperities, the free energy profiles for nitric oxide (NO), carbon monooxide (CO), and O-2 migration are explored using the steered MDs simulation and the ligand binding energies are calculated using QM/MM schemes. The potential of mean force profiles suggest that the longer branch of the tunnel would be the most favorable route for NO migration and a second NO trapping site other than the distal heme pocket along this route in the Ns H-NOX was identified. On the contrary, CO and O-2 would prefer to diffuse via the shorter branch of the tunnel. The QM/MM (quantum mechanics/molecular mechanics) calculations suggest that the hydrophobic distal pocket of Ns H-NOX would provide an approximately vacuum environment and the ligand discrimination would be determined by the intrinsic binding properties of the diatomic gas ligand to the heme group. Proteins 2013; 81:1363-1376. (c) 2013 Wiley Periodicals, Inc.

DOI:10.1002/prot.24279

Find full text with Google Scholar.