Georgoulia, Panagiota S.; Glykos, Nicholas M.
On the Foldability of Tryptophan-Containing Tetra- and Pentapeptides: An Exhaustive Molecular Dynamics Study
JOURNAL OF PHYSICAL CHEMISTRY B, 117:5522-5532, MAY 9 2013

Short peptides serve as minimal model systems to decipher the determinants of foldability due to their simplicity arising from their smaller size, their ability to echo protein-like structural characteristics, and their direct implication in force field validation. Here, we describe an effort to identify small peptides that can still form stable structures in aqueous solutions. We followed the in silico folding of a selected set of 8640 tryptophan-containing tetra- and pentapeptides through 15 210 molecular dynamics simulations amounting to a total of 272.46 mu s using explicit representation of the solute and full treatment of the electrostatics. The evaluation and sorting of peptides is achieved through scoring functions, which include terms based on interatomic vector distances, atomic fluctuations, and rmsd matrices between successive frames of a trajectory. Highly scored peptides are studied further via successive simulation rounds of increasing simulation length and using different empirical force fields. Our method suggested only a handful of peptides with strong foldability prognosis. The discrepancies between the predictions of the various force fields for such short sequences are also extensively discussed. We conclude that the vast majority of such short peptides do not adopt significantly stable structures in water solutions, at least based on our computational predictions. The present work can be utilized in the rational design and engineering of bioactive peptides with desired molecular properties.

DOI:10.1021/jp401239v

Find full text with Google Scholar.