Wan, Hua; Hu, Jian-ping; Tian, Xu-hong; Chang, Shan
Molecular dynamics simulations of wild type and mutants of human complement receptor 2 complexed with C3d
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 15:1241-1251, 2013

The interaction between human complement receptor type 2 (CR2) and antigen-bound C3d can bridge the innate and adaptive immune systems. The recently determined structure of the CR2(SCR1-2):C3d complex has revealed the expected binding interface of CR2-C3d. In this article, wild type (WT) and three mutants of the new structure are studied by molecular dynamics (MD) simulations. The differently decreased structural stabilities of the mutants relative to WT are shown to be consistent with the experimental data, which can be explained by the different hydrogen bond patterns at the interfaces. It is also found that two clusters of residues (D36/E37/E39 and E160/D163/E166) in the acidic pocket of C3d are important for CR2-C3d interactions, which is in good agreement with previous mutagenesis study. In addition, functional dynamics and the conformational change of CR2 are explored by using domain cross-correlation map (DCCM), principal component analysis (PCA), and free energy landscape (FEL) methods. The conformational change mainly corresponds to the opening of a V-shaped structure of CR2, which is consistent with the previously reported high interdomain flexibility of CR2. We further suppose that the opening of a V-shaped structure of CR2 may favor the binding stability of CR2(SCR1-2):C3d. This study would provide some new insights into the understanding of the CR2-C3d interaction mechanism.

DOI:10.1039/c2cp41388d

Find full text with Google Scholar.