Ballenegger, V.; Cerda, J. J.; Holm, C.
How to Convert SPME to P3M: Influence Functions and Error Estimates
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 8:936-947, MAR 2012

We demonstrate explicitly how the two seemingly different particle mesh Ewald methods, the smooth particle mesh Ewald (SPME) and the particle particle particle mesh (P3M), can be mathematically transformed into each other. This allows us in particular to convert the error estimate of the P3M method in the energy-conserving scheme (also known as "P3M with analytic differentiation") into an error estimate for the SPME method, via a simple change of the lattice Green function. Our error estimate is valid for any values of the SPME parameters (mesh size, spline interpolation order, Ewald splitting parameter, real-space cutoff distance), including odd orders of splines. The problem with the self-forces is avoided thanks to an analytical formula that allows to subtract them directly within the particle mesh calculation. Plots of the accuracy of the SPME forces are provided for a wide range of parameter values. The main use of the error estimate is to allow simulation program to scan quickly the multidimensional parameter space to find the best set of parameters to achieve a target accuracy at the smallest computational cost. As a byproduct, we show how a SPME code can be transformed into a P3M version by changing a few lines of code. We demonstrate also that the P3M lattice Green function can be approximated by a closed farm expression, computable on-the-fly, that provides essentially the same accuracy as the full function.

DOI:10.1021/ct2001792

Find full text with Google Scholar.