Jiao, Wanting; McDonald, Quentin; Coxon, James M.; Parker, Emily J.
Molecular Modeling Studies of Peptide Inhibitors Highlight the Importance of Conformational Prearrangement for Inhibition of Calpain
BIOCHEMISTRY, 49:5533-5539, JUL 6 2010

The overexpression of the cysteine protease calpain is associated with many diseases, including brain trauma, spinal cord injury, Alzheimer's disease, Parkinson's disease, muscular dystrophy, arthritis, and cataract. Calpastatin is the naturally occurring specific regulator of calpain activity. It has previously been reported that a 20-mer peptide truncated from region B of calpastatin inhibitory domain 1 (named CP1B) retains both the affinity and selectivity of calpastatin toward calpain, exhibiting a K(i) of 26 nM against mu-calpain, and is 1000-fold more selective for mu-calpain than cathepsin L. Both the wild-type and beta-Ala mutant CP1B peptides exhibit a propensity to adopt a looplike conformation between Glu10 and Lys13. A computational study of human wild-type CP1B and the beta-Ala mutants of this peptide was conducted. The resulting structural predictions were compared with the crystal structure of the calpain-calpastatin complex and were correlated with experimental IC(50) values. These findings suggest that the conformational preference of the loop region between Glu10 and Lys13 of CP1B in the absence of calpain may contribute to the inhibitory activity of this series of peptides against calpain.

DOI:10.1021/bi100048y

Find full text with Google Scholar.