Knaggs, Michael H.; Salsbury, Freddie R., Jr.; Edgell, Marshall Hall; Fetrow, Jacquelyn S.
Insights into correlated motions and long-range interactions in CheY derived from molecular dynamics simulations
BIOPHYSICAL JOURNAL, 92:2062-2079, MAR 15 2007

CheY is a response regulator protein involved in bacterial chemotaxis. Much is known about its active and inactive conformations, but little is known about the mechanisms underlying long-range interactions or correlated motions. To investigate these events, molecular dynamics simulations were performed on the unphosphorylated, inactive structure from Salmonella typhimurium and the CheY-BeF3- active mimic structure (with BeF3- removed) from Escherichia coli. Simulations utilized both sequences in each conformation to discriminate sequence- and structure-specific behavior. The previously identified conformational differences between the inactive and active conformations of the strand-4-helix-4 loop, which are present in these simulations, arise from the structural, and not the sequence, differences. The simulations identify previously unreported structure-specific flexibility features in this loop and sequence-specific flexibility features in other regions of the protein. Both structure-and sequence specific long-range interactions are observed in the active and inactive ensembles. In the inactive ensemble, two distinct mechanisms based on Thr-87 or IIe-95 rotameric forms, are observed for the previously identified g+ and g- rotamer sampling by Tyr-106. These molecular dynamics simulations have thus identified both sequence- and structure-specific differences in flexibility, long-range interactions, and rotameric form of key residues. Potential biological consequences of differential flexibility and long-range correlated motion are discussed.

DOI:10.1529/biophysj.106.081950

Find full text with Google Scholar.