Liu, Z.W.; Xu, Y.; Tang, P.
Molecular dynamics Simulations of C2F6 effects on gramicidin A: Implications of the mechanisms of general anesthesia
BIOPHYSICAL JOURNAL, 88:3784-3791, JUN 2005

It was recently postulated that the effects of general anesthetics on protein global dynamics might underlie a unitary molecular mechanism of general anesthesia. To verify that the specific dynamics effects caused by general anesthetics were not shared by nonanesthetic molecules, two parallel 8-ns all-atom molecular dynamics simulations were performed on a gramicidin A (gA) channel in a fully hydrated dimyristoylphosphatidylcholine membrane in the presence and absence of hexafluoroethane (HFE), which structurally resembles the potent anesthetic molecule halothane but produces no anesthesia. Similar to halothane, HFE had no measurable effects on the gA channel structure. In contrast to halothane, HFE produced no significant changes in the gA channel dynamics. The difference between halothane and HFE on channel dynamics can be attributed to their distinctly different distributions within the lipid bilayer and consequently to the different interactions of the anesthetic and the nonanesthetic molecules with the channel-anchoring tryptophan residues. The study further supports the notion that anesthetic-induced changes in protein global dynamics may play an important role in mediating anesthetic actions on proteins.

DOI:10.1529/biophysj.104.055566

Find full text with Google Scholar.