Gao, H.J.; Kong, Y.
Simulation of DNA-nanotube interactions
ANNUAL REVIEW OF MATERIALS RESEARCH, 34:123-150, 2004

Carbon nanotubes functionalized with biological molecules (such as protein peptides and nucleic acids) show great potential for application in bioengineering and nanotechnology. Fundamental understanding, description, and regulation of such bio-nano-systems will ultimately lead to a new generation of integrated systems that combine unique properties of the carbon nanotube (CNT) with biological recognition capabilities. In this review, we describe recent advances in understanding the interactions between deoxyribonucleic acids (DNA) and CNT, as well as relevant simulation techniques. We also review progress in simulating DNA noncovalent interactions with CNTs in an aqueous environment. Molecular dynamics simulations indicate that DNA molecules may be encapsulated inside or wrap around CNT owing to van der Waals attraction between DNA and CNT. We focus on the dynamics and energetics of DNA encapsulation inside nanotubes and discuss the mechanism of encapsulation and the effects of nanotube size, nanotube end-group, DNA base sequence, solvent temperature and pressure on the encapsulation process. Finally, we discuss the likely impact of DNA encapsulation on bioengineering and nanotechnology, as well as other potential applications.

DOI:10.1146/annurev.matsci.34.040203.120402

Find full text with Google Scholar.