Research Topics - Membrane Biology
Water Bipolar Arrangement in Aquaporins

image size: 82.5KB
made with VMD

Aquaporins are membrane water channels that play critical roles in controlling the water contents of cells. These channels are widely distributed in all kingdoms of life, including bacteria, plants, and mammals. More than ten different aquaporins have been found in human body, and several diseases, such as congenital cataracts and nephrogenic diabetes insipidus, are connected to the impaired function of these channels. They form tetramers in the cell membrane, and facilitate the transport of water and, in some cases, other small solutes across the membrane. However, the water pores are completely impermeable to charged species, such as protons, a remarkable property that is critical for the conservation of membrane's electrochemical potential, but paradoxical at the same time, since protons can usually be transfered readily through water molecules. The results of our simulations have now provided new insight into the mechanism underlying this fascinating property. Water molecules passing the channel are forced, by the protein's electrostatic forces, to flip at the center of the channel (see the animation), thereby breaking the alternative donor-acceptor arrangement that is necessary for proton translocation (read the complete story in our Science paper).

All Spotlights

Papers

Structural refinement of proteins by restrained molecular dynamics simulations with non-interacting molecular fragments. Rong Shen, Wei Han, Giacomo Fiorin, Shahidul M. Islam, Klaus Schulten, and Benoit Roux. PLoS Computational Biology, 11:e1004368, 2015. (19 pages).

Enhanced sampling techniques in molecular dynamics simulations of biological systems. Rafael C. Bernardi, Marcelo C. R. Melo, and Klaus Schulten. Biochimica et Biophysica Acta, 1850:872-877, 2015.

A highly tilted membrane configuration for the pre-fusion state of synaptobrevin. Andrew E. Blanchard, Mark J. Arcario, Klaus Schulten, and Emad Tajkhorshid. Biophysical Journal, 107:2112-2121, 2014.

Synaptotagmin's role in neurotransmitter release likely involves Ca2+-induced conformational transition. Zhe Wu and Klaus Schulten. Biophysical Journal, 107:1156-1166, 2014.

A structural model of the active ribosome-bound membrane protein insertase YidC. Stephan Wickles, Abhishek Singharoy, Jessica Andreani, Stefan Seemayer, Lukas Bischoff, Otto Berninghausen, Johannes Soeding, Klaus Schulten, Eli van der Sluis, and Roland Beckmann. eLife, 3:e03035, 2014. (17 pages).

Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. Michaël L. Cartron, John D. Olsen, Melih Sener, Philip J. Jackson, Amanda A. Brindley, Pu Qian, Mark J. Dickman, Graham J. Leggett, Klaus Schulten, and C. Neil Hunter. Biochimica et Biophysica Acta - Bioenergetics, 1837:1769-1780, 2014.

Structural mechanism of voltage-dependent gating in an isolated voltage-sensing domain. Qufei Li, Sherry Wanderling, Marcin Paduch, David Medovoy, Abhishek Singharoy, Ryan McGreevy, Carlos Villalba-Galea, Raymond E. Hulse, Benoit Roux, Klaus Schulten, Anthony Kossiakoff, and Eduardo Perozo. Nature Structural & Molecular Biology, 21:244-252, 2014.

The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex. Antony R. Crofts, Sangjin Hong, Charles Wilson, Rodney Burton, Doreen Victoria, Chris Harrison, and Klaus Schulten. Biochimica et Biophysica Acta, 1827:1362-1377, 2013.

Reconciling the roles of kinetic and thermodynamic factors in membrane-protein insertion. James C. Gumbart, Ivan Teo, Benoit Roux, and Klaus Schulten. Journal of the American Chemical Society, 135:2291-2297, 2013.

The p7 protein of hepatitis C virus forms structurally plastic, minimalist ion channels. Danielle E. Chandler, Francois Penin, Klaus Schulten, and Christophe Chipot. PLoS Computational Biology, 8:e1002702, 2012. (10 pages).