Jejoong Yoo and Aleksei Aksimentiev.
Improved parameterization of amine-carboxylate and amine-phosphate
interactions for molecular dynamics simulations using the CHARMM and
AMBER force fields.
Journal of Chemical Theory and Computation, 12:430-443, 2016.
YOO2016-AA
Over the past decades, molecular dynamics (MD) simulations of biomolecules have become a mainstream biophysics technique. As the length and time scales amenable to the MD method increase, shortcomings of the empirical force fields, which have been developed and validated using relatively short simulations of small molecules, become apparent. One common artifact is aggregation of water-soluble biomolecules driven by artificially strong charge–charge interactions. Here, we report a systematic atom pair-specific refinement of Lennard-Jones parameters (NBFIX) describing amine–carboxylate and amine–phosphate interactions, which bring MD simulations of basic peptide-mediated nucleic acid assemblies and lipid bilayer membranes into better agreement with experimental data. As our refinement does not affect the existing parametrization of bonded interactions or alter the solvation free energies, it improves the realism of an MD simulation without introducing additional artifacts.
Download Full Text
The manuscripts available on our site are provided for your personal
use only and may not be retransmitted or redistributed without written
permissions from the paper's publisher and author. You may not upload any
of this site's material to any public server, on-line service, network, or
bulletin board without prior written permission from the publisher and
author. You may not make copies for any commercial purpose. Reproduction
or storage of materials retrieved from this web site is subject to the
U.S. Copyright Act of 1976, Title 17 U.S.C.