TCB Publications - Abstract

Ilia A. Solov'yov, P. J. Hore, Thorsten Ritz, and Klaus Schulten. A chemical compass for bird navigation. In Masoud Mohseni, Yasser Omar, Greg Engel, and Martin B. Plenio, editors, Quantum Effects in Biology, chapter 10, pp. 218-236. Cambridge University Press, 2014.

SOLO2014A Migratory birds travel spectacular distances each year, navigating and orienting by a variety of means, most of which are poorly understood. Among them is a remarkable ability to perceive the intensity and direction of the Earth's magnetic field. Biologically credible mechanisms for the detection of such a weak field (25-65 mT) are scarce and in recent years just two proposals have emerged as frontrunners. One, essentially classical, centers on clusters of magnetic iron-containing particles in the upper beak which appear to act as a magnetometer for determining geographical position. The other relies on the quantum spin dynamics of transient photoinduced radical pairs. Originally suggested by Schulten in 1978 as the basis of the avian magnetic compass sensor, this mechanism gained support from the subsequent observation that the compass is light-dependent. The radical pair hypothesis began to attract increased interest following the proposal in 2000 that free radical chemistry could occur in the bird's retina initiated by photoexcitation of cryptochrome, a specialized photoreceptor protein. In the present paper we review the important physical and chemical constraints on a possible radical-pair-based compass sensor and discuss the suggestion that radical pairs in cryptochromes might provide a biological realization for a magnetic compass.

Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: PDF ( 2.6MB)