Edgar Erwin, Klaus Obermayer, and Klaus Schulten.
Self-organizing maps: Stationary states, metastability and
convergence rate.
Biological Cybernetics, 67:35-45, 1992.
ERWI92B
We investigate the effect of various types of neighborhood function on the convergence rates and the presence or absence of metastable stationary states of Kohonen's self-organizing feature map algorithm in one dimension. We demonstrate that the time necessary to form a topographic representation of the unit interval [0,1] may vary over several orders of magnitude depending on the range and also the shape of the neighborhood function, by which the weight changes of the neurons in the neighborhood of the winning neuron are scaled. We will prove that for neighborhood functions which are convex on an interval given by the length of the Kohonen chain there exist no metastable states. For all other neighborhood functions, metastable states are present and may trap the algorithm during the learning process. For the widely-used Gaussian function there exists a threshold for the width above which metastable states cannot exist. Due to the presence or absence of metastable states, convergence time is very sensitive to slight changes in the shape of the neighborhood function. Fastest convergence is achieved using neighborhood functions which are "convex" over a large range around the winner neuron and yet have large differences in value at neighboring neurons.
Download Full Text
The manuscripts available on our site are provided for your personal
use only and may not be retransmitted or redistributed without written
permissions from the paper's publisher and author. You may not upload any
of this site's material to any public server, on-line service, network, or
bulletin board without prior written permission from the publisher and
author. You may not make copies for any commercial purpose. Reproduction
or storage of materials retrieved from this web site is subject to the
U.S. Copyright Act of 1976, Title 17 U.S.C.