John A. Board, Jr., J. W. Causey, James F. Leathrum, Jr., Andreas Windemuth,
and Klaus Schulten.
Accelerated molecular dynamics simulation with the parallel fast
multipole algorithm.
Chemical Physics Letters, 198:89-94, 1992.
BOAR92
We have implemented the fast multipole algorithm (FMA) of Greengard and Rokhlin and incorporated it into the molecular dynamics program MD of Windemuth and Schulten, allowing rapid computation of the non-bonded forces acting in dynamical protein systems without truncation or other corruption of the Coulomb force. The resulting program speeds up simulations of protein systems with approximately 24000 atoms by up to an order of magnitude on a single workstation. Additionally, we have implemented a parallel version of the three-dimensional FMA code on a loosely coupled network of workstations, further reducing simulation times. Large (in both size of system and length of simulated time) protein molecular dynamics simulations are now possible on workstations rather than supercomputers, and very large protein computations are possible on clusters of workstations and parallel machines.
Download Full Text
The manuscripts available on our site are provided for your personal
use only and may not be retransmitted or redistributed without written
permissions from the paper's publisher and author. You may not upload any
of this site's material to any public server, on-line service, network, or
bulletin board without prior written permission from the publisher and
author. You may not make copies for any commercial purpose. Reproduction
or storage of materials retrieved from this web site is subject to the
U.S. Copyright Act of 1976, Title 17 U.S.C.