TCB Publications - Abstract

Hans-Ulrich Bauer, Klaus Schulten, and Walter Nadler. Generalized moment expansion of dynamic correlation functions in finite Ising systems. Physical Review B, 38:445-458, 1988.

BAUE88 In this paper we study dynamic correlation functions of one- and two-dimensional kinetic Ising models, in particular, in situations where nonergodic behavior and critical slowing down emerge. We also investigate in how far nonexponential relaxation as described by a Williams-Watts function $ \exp[-(t/ \tau)^{\beta}]$ results in such systems. The method we apply is an expansion which simultaneously takes the high- and low-frequency behavior of observables into account (generalized moment expansion). This approximation can be applied to kinetic Ising models with arbitrary transition rate constants. Its computational effort does not increase when relaxation times diverge. However, the method involves the inversion of the transition operator and, hence, can be applied only to finite systems, the size of which depends on computational resources. We introduce a coarse graining of the state space which allows to extend the system size further and yields accurate magnetization correlation functions.

Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: PDF ( 1.1MB), Journal