TCB Publications - Abstract

Emad Tajkhorshid, Jerome Baudry, Klaus Schulten, and Sandor Suhai. Molecular dynamics study of the nature and origin of retinal's twisted structure in bacteriorhodopsin. Biophysical Journal, 78:683-693, 2000. (PMC: 1300671)

TAJK2000 The planarity of the polyene chain of the retinal chromophore in bacteriorhodopsin is studied using molecular dynamics simulation techniques, and applying different force field parameters and starting crystal structures. The largest deviations from a planar structure are observed for the $C_{13}=C_{14}$ and $C_{15}=N_{16}$ double bonds in the retinal Schiff base structure. The other dihedral angles along the polyene chain of the chromophore, although having lower torsional barriers in some cases, do not significantly deviate from the planar structure. The results of the simulations of different mutants of the pigment show that, among the studied amino acids of the binding pocket, the side chain of Trp86 has the largest impact on the planarity of retinal, and the mutation of this amino acid to alanine leads to chromophore planarity. Deletion of the methyl $C_{20}$, removal of a water molecule hydrogen bonded to $H_{15}$, or mutation of other amino acids to alanine did not show any significant influence on the distortion of the chromophore. The results from the present study suggest the importance of the bulky residue of Trp86 in the isomerization process, in both ground and excited states of the chromophore, and in fine tuning of the pKa of the retinal protonated Schiff base in bacteriorhodopsin. The dark adaptation of the pigment and the last step of the bacteriorhodopsin photocycle imply low barriers against the rotation of the double bonds in the Schiff base region. The twisted double bonds found in the present study are consistent with the proposed mechanism of these ground state isomerization events.

Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: PDF (115.8KB), PS (329.0KB), Journal