TCB Publications - Abstract

Chuang Liu, Juan R. Perilla, Jiying Ning, Manman Lu, Guangjin Hou, Ruben Ramalho, Gregory Bedwell, In-Ja Byeon, Jinwoo Ahn, Jiong Shi, Angela Gronenborn, Peter Prevelige, Itay Rousso, Christopher Aiken, Tatyana Polenova, Klaus Schulten, and Peijun Zhang. Cyclophilin A stabilizes HIV-1 capsid through a novel non-canonical binding site. Nature Communications, 7:10714, 2016. (PMC: PMC4785225)

LIU2015 The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA sub- units, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.



Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: PDF ( 4.3MB), Journal, Supplemental Material ( 5.6MB) - Supplemental PDF, Supplemental Material ( 3.7MB) - Supplemental Movie 1, Supplemental Material ( 7.1MB) - Supplemental Movie 2