Highlights of our Work

With the continued global warming, carbon capture has turned into a highly relevant subject to our daily lives. To discover optimal materials for this purpose, we have turned to an innovative method integrating artificial intelligence (AI) and molecular simulations. Leveraging AI and machine learning, over 120,000 new candidates were generated within minutes. High-throughput screening and molecular dynamics simulations were then used to evaluate their stability and carbon capture capacity. As highlighted in a recent publication in Nature Communications, this innovative approach holds potential not only for advancing carbon capture technologies but also for addressing broader challenges in biomolecular simulations and drug design.

Editorials

The Future of Biomolecular Modeling

A 2015 TCBG Symposium brought together scientists from across the Midwest to brainstorm about what's on the horizon for computational modeling. See a summary of what these experts foresee. Read more

The Annals of MDFF

MDFF is a computational method that yields structures of massive biomolecular assemblies at atomic detail, using hybrid experimental data. Now Illinois scientists are applying MDFF to fascinating systems like the ribosome and HIV. By Lisa Pollack. Read more

Announcements

Electron transport through peptidesTCBG members on TV newsSparing healthy microbes while using a novel antibioticTajkhorshid receives Beckman Institute Vision and Spirit Award


Introducing



Seminars

  • No seminars in the next 28 days

  • Remembering Klaus Schulten

    Recent Publications All Publications

    Recent Reviews


    All Reviews

    Highly Cited

    TCB Group

    Research

    Software

    Outreach