Borreguero, Jose M.; Lynch, Vickie E.
Molecular Dynamics Force-Field Refinement against Quasi-Elastic Neutron Scattering Data
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 12:9-17, JAN 2016

Quasi-elastic neutron scattering (QENS) is one of the experimental techniques of choice for probing the dynamics at length and time scales that are also in the realm of full-atom molecular dynamics (MD) simulations. This overlap enables extension of current fitting methods that use time-independent equilibrium measurements to new methods fitting against dynamics data. We present an algorithm that fits simulation-derived incoherent dynamical structure factors "against QENS data probing the diffusive dynamics of the system. We showcase the difficulties inherent to this type of fitting problem, namely, the disparity between simulation and experiment environment, as well as limitations in the simulation due to incomplete sampling of phase space. We discuss a methodology to overcome these difficulties and apply it to a set of full-atom MD simulations for the purpose of refining the force-field parameter governing the activation energy of methyl rotation in the octa-methyl polyhedral oligomeric silsesquioxane molecule. Our optimal simulated activation energy agrees with the experimentally derived value up to a 5% difference, well within experimental error. We believe the method will find applicability to other types of diffusive motions and other representation of the systems such as coarse-grain models where empirical fitting is essential. Also, the refinement method can be extended to the coherent dynamic structure factor with no additional effort.

DOI:10.1021/acs.jctc.5b00878

Find full text with Google Scholar.