Marek, Ale; Shaffer, Christopher J.; Pepin, Robert; Slovakova, Kristina; Laszlo, Kenneth J.; Bush, Matthew F.; Turecek, Frantiek
Electron Transfer Reduction of the Diazirine Ring in Gas-Phase Peptide Ions. On the Peculiar Loss of [NH4O] from Photoleucine
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 26:415-431, MAR 2015

Electron transfer to gas-phase peptide ions with diazirine-containing amino acid residue photoleucine (L*) triggers diazirine ring reduction followed by cascades of residue-specific radical reactions. Upon electron transfer, substantial fractions of (GL*GGR +2H)(+au) cation-radicals undergo elimination of [NH4O] radicals and N2H2 molecules from the side chain. The side-chain dissociations are particularly prominent on collisional activation of long-lived (GL*GGR +2H)(+au) cation-radicals formed by electron transfer dissociation of noncovalent peptide-18-crown-6-ether ion complexes. The ion dissociation products were characterized by multistage tandem mass spectrometry (MSn) and ion mobility measurements. The elimination of [NH4O] was elucidated with the help of H-2, (15) N, and O-18-labeled peptide ions and found to specifically involve the amide oxygen of the N-terminal residue. The structures, energies, and electronic states of the peptide radical species were elucidated by a combination of near-UV photodissociation experiments and electron structure calculations combining ab initio and density functional theory methods. Electron transfer reaching the ground electronic states of charge reduced (GL*GGR +2H)(+au) cation-radicals was found to reduce the diazirine ring. In contrast, backbone N -aEuro parts per thousand C-alpha bond dissociations that represent a 60%-75% majority of all dissociations because of electron transfer are predicted to occur from excited electronic states.

DOI:10.1007/s13361-014-1047-0

Find full text with Google Scholar.