Chen, L. Y.
Free-energy landscape of glycerol permeation through aquaglyceroporin GlpF determined from steered molecular dynamics simulations
BIOPHYSICAL CHEMISTRY, 151:178-180, OCT 2010

The free-energy landscape of glycerol permeation through the aquaglyceroporin GlpF has been estimated in the literature by the nonequilibrium method of steered molecular dynamics (SMD) simulations and by the equilibrium method of adaptive biasing force (ABF) simulations. However, the ABF results qualitatively disagree with the SMD results that were based on the Jarzynski equality (JE) relating the equilibrium free-energy difference to the nonequilibrium work of the irreversible pulling experiments. In this paper. I present a new SMD study of the glycerol permeation through GlpF to explore the free-energy profile of glycerol along the permeation channel. Instead of the JE in terms of thermodynamic work, I use the fluctuation-dissipation theorem (FDT) of Brownian dynamics (BD), in terms of mechanical work, for extracting the free-energy difference from the nonequilibrium work of irreversible pulling experiments. The results of this new SMD-BD-FDT study are in agreement with the experimental data and with the ABF results. (C) 2010 Elsevier B.V. All rights reserved.

DOI:10.1016/j.bpc.2010.05.014

Find full text with Google Scholar.