Hodak, Miroslav; Bernholc, Jerzy
Insights into prion protein function from atomistic simulations
PRION, 4:13-19, JAN-MAR 2010

Computer simulations are a powerful tool for studies of biological systems. They have often been used to study prion protein (PrP), a protein responsible for neurodegenerative diseases, which include "mad cow disease" in cattle and Creutzfeldt-Jacob disease in humans. An important aspect of the prion protein is its interaction with copper ion, which is thought to be relevant for PrP's yet undetermined function and also potentially play a role in prion diseases. For studies of copper attachment to the prion protein, computer simulations have often been used to complement experimental data and to obtain binding structures of Cu-PrP complexes. This paper summarizes the results of recent ab initio calculations of copper-prion protein interactions focusing on the recently discovered concentration-dependent binding modes in the octare-peat region of this protein. In addition to determining the binding structures, computer simulations were also used to make predictions about PrP's function and the role of copper in prion diseases. The results demonstrate the predictive power and applicability of ab initio simulations for studies of metal-biomolecular complexes.

Find full text with Google Scholar.