Szori, Milan; Tobias, Douglas J.; Roeselova, Martina
Microscopic Wetting of Mixed Self-assembled Monolayers: A Molecular Dynamics Study
JOURNAL OF PHYSICAL CHEMISTRY B, 113:4161-4169, APR 2 2009

Molecular dynamics simulations are used to study the evolution of the organization of water molecules on the flat surface of well-ordered self-assembled monolayers (SAMs) of eight-carbon alkanethiolate chains bound to a gold substrate, as the character of the surface is finely tuned from completely hydrophobic to completely hydrophilic, and as the level of hydration is increased from submonolayer to the equivalent of about two monolayers of water. The hydrophilicity of the SAM surfaces is increased by randomly replacing methylterminated alkanethiolate chains with carboxylic acid-terminated chains. We report on the evolution of the structure of the surfaces of the SAMs, both in the absence and presence of water, and the organization of water molecules and the extent of wetting of the Surfaces, as the fraction of hydrophilic groups is increased. The results suggest that on the flat organic surfaces with a small fraction of the hydrophilic components the hydrophilic spots serve as nucleation sites, resulting in the growth of a larger number of (smaller) water droplets compared to the completely hydrophobic surface, whereas on the surfaces with a large fraction of the hydrophilic component the uptake of water proceeds via a water film growing, at first, over the hydrophilic domains and, eventually, bridging over the hydrophobic patches, and spreading out over the entire surface. We discuss the implications of these processes on the properties of the organic aerosols in the atmosphere.

DOI:10.1021/jp8074139

Find full text with Google Scholar.