Tsigelny, Igor F.; Bar-On, Pazit; Sharikov, Yuriy; Crews, Leslie; Hashimoto, Makoto; Miller, Mark A.; Keller, Steve H.; Platoshyn, Oleksandr; Yuan, Jason X. -J.; Masliah, Eliezer
Dynamics of alpha-synuclein aggregation and inhibition of pore-like oligomer development by beta-synuclein
FEBS JOURNAL, 274:1862-1877, APR 2007

Accumulation of alpha-synuclein resulting in the formation of oligomers and protofibrils has been linked to Parkinson's disease and Lewy body dementia. In contrast, beta-synuclein (beta-syn), a close homologue, does not aggregate and reduces alpha-synuclein (alpha-syn)-related pathology. Although considerable information is available about the conformation of alpha-syn at the initial and end stages of fibrillation, less is known about the dynamic process of alpha-syn conversion to oligomers and how interactions with antiaggregation chaperones such as beta-synuclein might occur. Molecular modeling and molecular dynamics simulations based on the micelle-derived structure of alpha-syn showed that alpha-syn homodimers can adopt nonpropagating (head-to-tail) and propagating (head-to-head) conformations. Propagating alpha-syn dimers on the membrane incorporate additional alpha-syn molecules, leading to the formation of pentamers and hexamers forming a ring-like structure. In contrast, beta-syn dimers do not propagate and block the aggregation of alpha-syn into ring-like oligomers. Under in vitro cell-free conditions, alpha-syn aggregates formed ring-like structures that were disrupted by beta-syn. Similarly, cells expressing alpha-syn displayed increased ion current activity consistent with the formation of Zn2+-sensitive nonselective cation channels. These results support the contention that in Parkinson's disease and Lewy body dementia, alpha-syn oligomers on the membrane might form pore-like structures, and that the beneficial effects of beta-synuclein might be related to its ability to block the formation of pore-like structures.

DOI:10.1111/j.1742-4658.2007.05733.x

Find full text with Google Scholar.