Mezei, M.; Filizola, M.
TRAJELIX: A computational tool for the geometric characterization of protein helices during molecular dynamics simulations
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 20:97-107, FEB 2006

We have developed a computer program with the necessary mathematical formalism for the geometric characterization of distorted conformations of alpha-helices proteins, such as those that can potentially be sampled during typical molecular dynamics simulations. This formalism has been incorporated into TRAJELIX, a new module within the SIMULAID framework (http://inka.mssm.edu/similar to mezei/simulaid/) that is capable of monitoring distortions of alpha-helices in terms of their displacement, global and local tilting, rotation around their axes, compression/extension, winding/unwinding, and bending. Accurate evaluation of these global and local structural properties of the helix can help study possible intramolecular and intermolecular changes in the helix packing of alpha-helical membrane proteins, as shown here in an application to the interacting helical domains of rhodopsin dimers. Quantification of the dynamic structural behavior of alpha-helical membrane proteins is critical for our understanding of signal transduction, and may enable structure-based design of more specific and efficient drugs.

DOI:10.1007/s10822-006-9039-1

Find full text with Google Scholar.