TCB Publications - Abstract

Melih K. Sener, Deyu Lu, Thorsten Ritz, Sanghyun Park, Petra Fromme, and Klaus Schulten. Robustness and optimality of light harvesting in cyanobacterial photosystem I. Journal of Physical Chemistry B, 106:7948-7960, 2002.

SENE2002A As most biological species, photosynthetic lifeforms have evolved to function optimally, despite thermal disorder and with fault tolerance. It remains a challenge to understand how this is achieved. To address this challenge the function of the protein- pigment complex photosystem I (PSI) of the cyanobacterium Synechococcus elongatus is investigated theoretically. The recently obtained high resolution structure of this complex exhibits an aggregate of 96 chlorophylls that are electronically coupled to function as a light-harvesting antenna complex. This paper constructs an effective Hamiltonian for the chlorophyll aggregate to describe excitation transfer dynamics and spectral properties of PSI. For this purpose, a new kinetic expansion method, the sojourn expansion, is introduced. Our study shows that at room temperature fluctuations of site energies have little effect on the calculated excitation lifetime and quantum yield, which compare favorably with experimental results. The efficiency of the system is found to be robust against `pruning' of individual chlorophylls. An optimality of the arrangement of chlorophylls is identified through the quantum yield in comparison with an ensemble of randomly oriented chlorophylls, though, the quantum yield is seen to change only within a narrow interval in such an ensemble.

Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: Journal, Request a Copy