TCB Publications - Abstract

James Phillips, Gengbin Zheng, Sameer Kumar, and Laxmikant Kale. NAMD: Biomolecular simulation on thousands of processors. In Proceedings of the IEEE/ACM SC2002 Conference, Technical Paper 277, pp. 1-18. IEEE Press, Baltimore, Maryland, 2002.

PHIL2002-LK NAMD is a fully featured, production molecular dynamics program for high performance simulation of large biomolecular systems. We have previously, at SC2000, presented scaling results for simulations with cutoff electrostatics on up to 2048 processors of the ASCI Red machine, achieved with an object-based hybrid force and spatial decomposition scheme and an aggressive measurement-based predictive load balancing framework. We extend this work by demonstrating similar scaling on the much faster processors of the PSC Lemieux Alpha cluster, and for simulations employing efficient (order N log N) particle mesh Ewald full electrostatics. This unprecedented scalability in a biomolecular simulation code has been attained through latency tolerance, adaptation to multiprocessor nodes, and the direct use of the Quadrics Elan library in place of MPI by the Charm++/Converse parallel runtime system.


Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: Journal