TCB Publications - Abstract

Craig MacGregor-Chatwin, Melih Sener, Samuel F.H. Barnett, Andrew Hitchcock, Meghan C. Barnhart-Dailey, Karim Maghlaoui, James Barber, Jerilyn A. Timlin, Klaus Schulten, and C. Neil Hunter. Lateral segregation of Photosystem I in cyanobacterial thylakoid. Plant Cell, 29:1119-1136, 2017. (PMC:  PMC5466035)

MACG2017 Photosystem I (PSI) is the dominant photosystem in cyanobacteria and it plays a pivotal role in cyanobacterial metabolism. Despite its biological importance, the native organization of PSI in cyanobacterial thylakoid membranes is poorly understood. Here, we use atomic force microscopy (AFM) to show that ordered, extensive macromolecular arrays of PSI complexes are present in thylakoids from Thermosynechococcus elongatus, Synechococcus sp PCC 7002, and Synechocystis sp PCC 6803. Hyperspectral confocal fluorescence microscopy and three-dimensional structured illumination microscopy of Synechocystis sp PCC 6803 cells visualize PSI domains within the context of the complete thylakoid system. Crystallographic and AFM data were used to build a structural model of a membrane landscape comprising 96 PSI trimers and 27,648 chlorophyll a molecules. Rather than facilitating intertrimer energy transfer, the close associations between PSI primarily maximize packing efficiency; short-range interactions with Complex I and cytochrome b6f are excluded from these regions of the membrane, so PSI turnover is sustained by long-distance diffusion of the electron donors at the membrane surface. Elsewhere, PSI-photosystem II contact zones provide sites for docking phycobilisomes and the formation of megacomplexes. PSI-enriched domains in cyanobacteria might foreshadow the partitioning of PSI into stromal lamellae in plants, similarly sustained by long-distance diffusion of electron carriers.



Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: Journal