TCB Publications - Abstract

Tyler M Earnest, Jonathan Lai, Ke Chen, Michael J Hallock, James R Williamson, and Zaida Luthey-Schulten. Towards a whole-cell model of ribosome biogenesis: Kinetic modeling of SSU assembly. Biophysical Journal, 109:1117-1135, 2015. (PMC: PMC4576174)

EARN2015-ZLS Central to all life is the assembly of the ribosome: a coordinated process involving the hierarchical association of ribosomal proteins to the RNAs forming the small and large ribosomal subunits. The process is further complicated by effects arising from the intracellular heterogeneous environment and the location of ribosomal operons within the cell. We provide a simplified model of ribosome biogenesis in slow-growing Escherichia coli. Kinetic models of in vitro small- subunit reconstitution at the level of individual protein/ribosomal RNA interactions are developed for two temperature regimes. The model at low temperatures predicts the existence of a novel 5'$\rightarrow$3'$\rightarrow$central assembly pathway, which we investigate further using molecular dynamics. The high-temperature assembly network is incorporated into a model of in vivo ribosome biogenesis in slow-growing E. coli. The model, described in terms of reaction-diffusion master equations, contains 1336 reactions and 251 species that dynamically couple transcription and translation to ribosome assembly. We use the Lattice Microbes software package to simulate the stochastic production of mRNA, proteins, and ribosome intermediates over a full cell cycle of 120 min. The whole-cell model captures the correct growth rate of ribosomes, predicts the localization of early assembly intermediates to the nucleoid region, and reproduces the known assembly timescales for the small subunit with no modifications made to the embedded in vitro assembly network.

Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: Request a Copy, Journal