TCB Publications - Abstract

Yi Wang and Emad Tajkhorshid. Electrostatic funneling of substrate in mitochondrial inner membrane carriers. Proceedings of the National Academy of Sciences, USA, 105:9598-9603, 2008. (PMC: 2474497)

WANG2008A-ET Exchange of ATP and ADP across mitochondrial membrane replenishes the cytoplasm with newly synthesized ATP and provides the mitochondria with the substrate ADP for oxidative phosphorylation. The sole means of this exchange is the mitochondrial ADP/ATP carrier (AAC), a membrane protein that is suggested to cycle between two conformationally distinct states, cytosolic-open (c-state) and matrix-open (m-state), there by shuttling nucleotides across the inner mitochondrial membrane. However, the c-state is the only structurally resolved state, and the binding site of ADP remains elusive. Here, we present 0.3 $\mu$s of all-atom MD simulations of the c-state revealing rapid, spontaneous binding of ADP to deeply positioned binding sites within the AAC lumen. To our knowledge, a complete ligand-binding event has heretofore not been described in full atomic detail in unbiased simulations. The identified ADP-bound state and additional simulations shed light on key structural elements and the initial steps involved in conversion to the m-state. Electrostatic analysis of trajectories reveals the presence of an unusually strong positive electrostatic potential in the lumen of AAC that appears to be the main driving force for the observed spontaneous binding of ADP. We provide evidence that the positive electrostatic potential is likely a common attribute among the entire family of mitochondrial carriers. In addition to playing a key role in substrate recruitment and translocation, the electropositivity of mitochondrial carriers might also be critical for their binding to the negatively charged environment of the inner mitochondrial membrane.


Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: PDF (899.7KB), Journal