TCB Publications - Abstract

Deyu Lu, Yan Li, Umberto Ravaioli, and Klaus Schulten. Empirical nanotube model for biological applications. Journal of Physical Chemistry B, 109:11461-11467, 2005. (PMC: 2441848)

LU2005 An empirical model is developed to capture the electrostatics of finite-length single- walled armchair carbon nanotubes for biological applications. Atomic partial charges are determined to match the electrostatic potential field computed at the B3LYP/6-31G* level of density functional theory, and a tight-binding Hamiltonian is selected which permits one to reproduce the dielectric properties in good agreement with density functional theory results. The new description is applied to study movement of a water molecule through a finite-length nanotube channel in order to demonstrate the method's feasibility. We find that atomic partial charges on the tube edges dominate the interaction between the nanotube and the entering water molecule, while the polarization of the nanotube lowers the electrostatic energy of the water molecule significantly inside the tube.


Download Full Text

The manuscripts available on our site are provided for your personal use only and may not be retransmitted or redistributed without written permissions from the paper's publisher and author. You may not upload any of this site's material to any public server, on-line service, network, or bulletin board without prior written permission from the publisher and author. You may not make copies for any commercial purpose. Reproduction or storage of materials retrieved from this web site is subject to the U.S. Copyright Act of 1976, Title 17 U.S.C.

Download full text: Journal, Request a Copy