Main Page   Namespace List   Class Hierarchy   Alphabetical List   Compound List   File List   Namespace Members   Compound Members   File Members   Related Pages  

colvargrid.C

Go to the documentation of this file.
00001 // -*- c++ -*-
00002 
00003 // This file is part of the Collective Variables module (Colvars).
00004 // The original version of Colvars and its updates are located at:
00005 // https://github.com/Colvars/colvars
00006 // Please update all Colvars source files before making any changes.
00007 // If you wish to distribute your changes, please submit them to the
00008 // Colvars repository at GitHub.
00009 
00010 #include <ctime>
00011 #include <fstream>
00012 
00013 #include "colvarmodule.h"
00014 #include "colvarvalue.h"
00015 #include "colvarparse.h"
00016 #include "colvar.h"
00017 #include "colvarcomp.h"
00018 #include "colvargrid.h"
00019 #include "colvargrid_def.h"
00020 
00021 
00022 
00023 colvar_grid_count::colvar_grid_count()
00024   : colvar_grid<size_t>()
00025 {
00026   mult = 1;
00027 }
00028 
00029 colvar_grid_count::colvar_grid_count(std::vector<int> const &nx_i,
00030                                      size_t const &def_count)
00031   : colvar_grid<size_t>(nx_i, def_count, 1)
00032 {}
00033 
00034 colvar_grid_count::colvar_grid_count(std::vector<colvar *>  &colvars,
00035                                      size_t const &def_count,
00036                                      bool margin)
00037   : colvar_grid<size_t>(colvars, def_count, 1, margin)
00038 {}
00039 
00040 std::istream & colvar_grid_count::read_multicol(std::istream &is, bool add)
00041 {
00042   return colvar_grid<size_t>::read_multicol(is, add);
00043 }
00044 
00045 int colvar_grid_count::read_multicol(std::string const &filename,
00046                                      std::string description,
00047                                      bool add)
00048 {
00049   return colvar_grid<size_t>::read_multicol(filename, description, add);
00050 }
00051 
00052 std::ostream & colvar_grid_count::write_multicol(std::ostream &os) const
00053 {
00054   return colvar_grid<size_t>::write_multicol(os);
00055 }
00056 
00057 int colvar_grid_count::write_multicol(std::string const &filename,
00058                                       std::string description) const
00059 {
00060   return colvar_grid<size_t>::write_multicol(filename, description);
00061 }
00062 
00063 std::ostream & colvar_grid_count::write_opendx(std::ostream &os) const
00064 {
00065   return colvar_grid<size_t>::write_opendx(os);
00066 }
00067 
00068 int colvar_grid_count::write_opendx(std::string const &filename,
00069                                     std::string description) const
00070 {
00071   return colvar_grid<size_t>::write_opendx(filename, description);
00072 }
00073 
00074 
00075 
00076 colvar_grid_scalar::colvar_grid_scalar()
00077   : colvar_grid<cvm::real>(), samples(NULL)
00078 {}
00079 
00080 colvar_grid_scalar::colvar_grid_scalar(colvar_grid_scalar const &g)
00081   : colvar_grid<cvm::real>(g), samples(NULL)
00082 {
00083 }
00084 
00085 colvar_grid_scalar::colvar_grid_scalar(std::vector<int> const &nx_i)
00086   : colvar_grid<cvm::real>(nx_i, 0.0, 1), samples(NULL)
00087 {
00088 }
00089 
00090 colvar_grid_scalar::colvar_grid_scalar(std::vector<colvar *> &colvars, bool margin)
00091   : colvar_grid<cvm::real>(colvars, 0.0, 1, margin), samples(NULL)
00092 {
00093 }
00094 
00095 colvar_grid_scalar::~colvar_grid_scalar()
00096 {
00097 }
00098 
00099 std::istream & colvar_grid_scalar::read_multicol(std::istream &is, bool add)
00100 {
00101   return colvar_grid<cvm::real>::read_multicol(is, add);
00102 }
00103 
00104 int colvar_grid_scalar::read_multicol(std::string const &filename,
00105                                       std::string description,
00106                                       bool add)
00107 {
00108   return colvar_grid<cvm::real>::read_multicol(filename, description, add);
00109 }
00110 
00111 std::ostream & colvar_grid_scalar::write_multicol(std::ostream &os) const
00112 {
00113   return colvar_grid<cvm::real>::write_multicol(os);
00114 }
00115 
00116 int colvar_grid_scalar::write_multicol(std::string const &filename,
00117                                        std::string description) const
00118 {
00119   return colvar_grid<cvm::real>::write_multicol(filename, description);
00120 }
00121 
00122 std::ostream & colvar_grid_scalar::write_opendx(std::ostream &os) const
00123 {
00124   return colvar_grid<cvm::real>::write_opendx(os);
00125 }
00126 
00127 int colvar_grid_scalar::write_opendx(std::string const &filename,
00128                                      std::string description) const
00129 {
00130   return colvar_grid<cvm::real>::write_opendx(filename, description);
00131 }
00132 
00133 
00134 cvm::real colvar_grid_scalar::maximum_value() const
00135 {
00136   cvm::real max = data[0];
00137   for (size_t i = 0; i < nt; i++) {
00138     if (data[i] > max) max = data[i];
00139   }
00140   return max;
00141 }
00142 
00143 
00144 cvm::real colvar_grid_scalar::minimum_value() const
00145 {
00146   cvm::real min = data[0];
00147   for (size_t i = 0; i < nt; i++) {
00148     if (data[i] < min) min = data[i];
00149   }
00150   return min;
00151 }
00152 
00153 cvm::real colvar_grid_scalar::minimum_pos_value() const
00154 {
00155   cvm::real minpos = data[0];
00156   size_t i;
00157   for (i = 0; i < nt; i++) {
00158     if(data[i] > 0) {
00159       minpos = data[i];
00160       break;
00161     }
00162   }
00163   for (i = 0; i < nt; i++) {
00164     if (data[i] > 0 && data[i] < minpos) minpos = data[i];
00165   }
00166   return minpos;
00167 }
00168 
00169 cvm::real colvar_grid_scalar::integral() const
00170 {
00171   cvm::real sum = 0.0;
00172   for (size_t i = 0; i < nt; i++) {
00173     sum += data[i];
00174   }
00175   cvm::real bin_volume = 1.0;
00176   for (size_t id = 0; id < widths.size(); id++) {
00177     bin_volume *= widths[id];
00178   }
00179   return bin_volume * sum;
00180 }
00181 
00182 
00183 cvm::real colvar_grid_scalar::entropy() const
00184 {
00185   cvm::real sum = 0.0;
00186   for (size_t i = 0; i < nt; i++) {
00187     if (data[i] >0) {
00188       sum += -1.0 * data[i] * cvm::logn(data[i]);
00189     }
00190   }
00191   cvm::real bin_volume = 1.0;
00192   for (size_t id = 0; id < widths.size(); id++) {
00193     bin_volume *= widths[id];
00194   }
00195   return bin_volume * sum;
00196 }
00197 
00198 
00199 colvar_grid_gradient::colvar_grid_gradient()
00200   : colvar_grid<cvm::real>(),
00201     samples(NULL),
00202     weights(NULL)
00203 {}
00204 
00205 colvar_grid_gradient::colvar_grid_gradient(std::vector<int> const &nx_i)
00206   : colvar_grid<cvm::real>(nx_i, 0.0, nx_i.size()),
00207     samples(NULL),
00208     weights(NULL)
00209 {}
00210 
00211 colvar_grid_gradient::colvar_grid_gradient(std::vector<colvar *> &colvars)
00212   : colvar_grid<cvm::real>(colvars, 0.0, colvars.size()),
00213     samples(NULL),
00214     weights(NULL)
00215 {}
00216 
00217 
00218 colvar_grid_gradient::colvar_grid_gradient(std::string &filename)
00219   : colvar_grid<cvm::real>(),
00220     samples(NULL),
00221     weights(NULL)
00222 {
00223   std::istream &is = cvm::main()->proxy->input_stream(filename,
00224                                                       "gradient file");
00225   if (!is) {
00226     return;
00227   }
00228 
00229   // Data in the header: nColvars, then for each
00230   // xiMin, dXi, nPoints, periodic flag
00231 
00232   std::string  hash;
00233   size_t i;
00234 
00235   if ( !(is >> hash) || (hash != "#") ) {
00236     cvm::error("Error reading grid at position "+
00237                 cvm::to_str(static_cast<size_t>(is.tellg()))+
00238                 " in stream(read \"" + hash + "\")\n");
00239     return;
00240   }
00241 
00242   is >> nd;
00243 
00244   if (nd > 50) {
00245     cvm::error("Error: excessive number of dimensions in file \""+
00246                filename+"\".  Please ensure that the file is not corrupt.\n",
00247                COLVARS_INPUT_ERROR);
00248     return;
00249   }
00250 
00251   mult = nd;
00252   std::vector<cvm::real> lower_in(nd), widths_in(nd);
00253   std::vector<int>       nx_in(nd);
00254   std::vector<int>       periodic_in(nd);
00255 
00256   for (i = 0; i < nd; i++ ) {
00257     if ( !(is >> hash) || (hash != "#") ) {
00258       cvm::error("Error reading grid at position "+
00259                   cvm::to_str(static_cast<size_t>(is.tellg()))+
00260                   " in stream(read \"" + hash + "\")\n");
00261       return;
00262     }
00263 
00264     is >> lower_in[i] >> widths_in[i] >> nx_in[i] >> periodic_in[i];
00265   }
00266 
00267   this->setup(nx_in, 0., mult);
00268 
00269   widths = widths_in;
00270 
00271   for (i = 0; i < nd; i++ ) {
00272     lower_boundaries.push_back(colvarvalue(lower_in[i]));
00273     periodic.push_back(static_cast<bool>(periodic_in[i]));
00274   }
00275 
00276   // Reset the istream for read_multicol, which expects the whole file
00277   is.clear();
00278   is.seekg(0);
00279   read_multicol(is);
00280   cvm::main()->proxy->close_input_stream(filename);
00281 }
00282 
00283 
00284 std::istream & colvar_grid_gradient::read_multicol(std::istream &is, bool add)
00285 {
00286   return colvar_grid<cvm::real>::read_multicol(is, add);
00287 }
00288 
00289 int colvar_grid_gradient::read_multicol(std::string const &filename,
00290                                         std::string description,
00291                                         bool add)
00292 {
00293   return colvar_grid<cvm::real>::read_multicol(filename, description, add);
00294 }
00295 
00296 std::ostream & colvar_grid_gradient::write_multicol(std::ostream &os) const
00297 {
00298   return colvar_grid<cvm::real>::write_multicol(os);
00299 }
00300 
00301 int colvar_grid_gradient::write_multicol(std::string const &filename,
00302                                          std::string description) const
00303 {
00304   return colvar_grid<cvm::real>::write_multicol(filename, description);
00305 }
00306 
00307 std::ostream & colvar_grid_gradient::write_opendx(std::ostream &os) const
00308 {
00309   return colvar_grid<cvm::real>::write_opendx(os);
00310 }
00311 
00312 int colvar_grid_gradient::write_opendx(std::string const &filename,
00313                                        std::string description) const
00314 {
00315   return colvar_grid<cvm::real>::write_opendx(filename, description);
00316 }
00317 
00318 
00319 void colvar_grid_gradient::write_1D_integral(std::ostream &os)
00320 {
00321   cvm::real bin, min, integral;
00322   std::vector<cvm::real> int_vals;
00323 
00324   os << "#       xi            A(xi)\n";
00325 
00326   if (cv.size() != 1) {
00327     cvm::error("Cannot write integral for multi-dimensional gradient grids.");
00328     return;
00329   }
00330 
00331   integral = 0.0;
00332   int_vals.push_back(0.0);
00333   min = 0.0;
00334 
00335   // correction for periodic colvars, so that the PMF is periodic
00336   cvm::real corr;
00337   if (periodic[0]) {
00338     corr = average();
00339   } else {
00340     corr = 0.0;
00341   }
00342 
00343   for (std::vector<int> ix = new_index(); index_ok(ix); incr(ix)) {
00344 
00345     if (samples) {
00346       size_t const samples_here = samples->value(ix);
00347       if (samples_here)
00348         integral += (value(ix) / cvm::real(samples_here) - corr) * cv[0]->width;
00349     } else {
00350       integral += (value(ix) - corr) * cv[0]->width;
00351     }
00352 
00353     if ( integral < min ) min = integral;
00354     int_vals.push_back(integral);
00355   }
00356 
00357   bin = 0.0;
00358   for ( int i = 0; i < nx[0]; i++, bin += 1.0 ) {
00359     os << std::setw(10) << cv[0]->lower_boundary.real_value + cv[0]->width * bin << " "
00360        << std::setw(cvm::cv_width)
00361        << std::setprecision(cvm::cv_prec)
00362        << int_vals[i] - min << "\n";
00363   }
00364 
00365   os << std::setw(10) << cv[0]->lower_boundary.real_value + cv[0]->width * bin << " "
00366      << std::setw(cvm::cv_width)
00367      << std::setprecision(cvm::cv_prec)
00368      << int_vals[nx[0]] - min << "\n";
00369 
00370   return;
00371 }
00372 
00373 
00374 
00375 integrate_potential::integrate_potential(std::vector<colvar *> &colvars, colvar_grid_gradient * gradients)
00376   : colvar_grid_scalar(colvars, true),
00377     gradients(gradients)
00378 {
00379   // parent class colvar_grid_scalar is constructed with margin option set to true
00380   // hence PMF grid is wider than gradient grid if non-PBC
00381 
00382   if (nd > 1) {
00383     cvm::main()->cite_feature("Poisson integration of 2D/3D free energy surfaces");
00384     divergence.resize(nt);
00385 
00386     // Compute inverse of Laplacian diagonal for Jacobi preconditioning
00387     // For now all code related to preconditioning is commented out
00388     // until a method better than Jacobi is implemented
00389 //     cvm::log("Preparing inverse diagonal for preconditioning...\n");
00390 //     inv_lap_diag.resize(nt);
00391 //     std::vector<cvm::real> id(nt), lap_col(nt);
00392 //     for (int i = 0; i < nt; i++) {
00393 //       if (i % (nt / 100) == 0)
00394 //         cvm::log(cvm::to_str(i));
00395 //       id[i] = 1.;
00396 //       atimes(id, lap_col);
00397 //       id[i] = 0.;
00398 //       inv_lap_diag[i] = 1. / lap_col[i];
00399 //     }
00400 //     cvm::log("Done.\n");
00401   }
00402 }
00403 
00404 
00405 integrate_potential::integrate_potential(colvar_grid_gradient * gradients)
00406   : gradients(gradients)
00407 {
00408   nd = gradients->num_variables();
00409   nx = gradients->number_of_points_vec();
00410   widths = gradients->widths;
00411   periodic = gradients->periodic;
00412 
00413   // Expand grid by 1 bin in non-periodic dimensions
00414   for (size_t i = 0; i < nd; i++ ) {
00415     if (!periodic[i]) nx[i]++;
00416     // Shift the grid by half the bin width (values at edges instead of center of bins)
00417     lower_boundaries.push_back(gradients->lower_boundaries[i].real_value - 0.5 * widths[i]);
00418   }
00419 
00420   setup(nx);
00421 
00422   if (nd > 1) {
00423     divergence.resize(nt);
00424   }
00425 }
00426 
00427 
00428 int integrate_potential::integrate(const int itmax, const cvm::real &tol, cvm::real & err)
00429 {
00430   int iter = 0;
00431 
00432   if (nd == 1) {
00433 
00434     cvm::real sum = 0.0;
00435     cvm::real corr;
00436     if ( periodic[0] ) {
00437       corr = gradients->average(); // Enforce PBC by subtracting average gradient
00438     } else {
00439       corr = 0.0;
00440     }
00441 
00442     std::vector<int> ix;
00443     // Iterate over valid indices in gradient grid
00444     for (ix = new_index(); gradients->index_ok(ix); incr(ix)) {
00445       set_value(ix, sum);
00446       sum += (gradients->value_output(ix) - corr) * widths[0];
00447     }
00448     if (index_ok(ix)) {
00449       // This will happen if non-periodic: then PMF grid has one extra bin wrt gradient grid
00450       set_value(ix, sum);
00451     }
00452 
00453   } else if (nd <= 3) {
00454 
00455     nr_linbcg_sym(divergence, data, tol, itmax, iter, err);
00456     cvm::log("Integrated in " + cvm::to_str(iter) + " steps, error: " + cvm::to_str(err) + "\n");
00457 
00458   } else {
00459     cvm::error("Cannot integrate PMF in dimension > 3\n");
00460   }
00461 
00462   return iter;
00463 }
00464 
00465 
00466 void integrate_potential::set_div()
00467 {
00468   if (nd == 1) return;
00469   for (std::vector<int> ix = new_index(); index_ok(ix); incr(ix)) {
00470     update_div_local(ix);
00471   }
00472 }
00473 
00474 
00475 void integrate_potential::update_div_neighbors(const std::vector<int> &ix0)
00476 {
00477   std::vector<int> ix(ix0);
00478   int i, j, k;
00479 
00480   // If not periodic, expanded grid ensures that neighbors of ix0 are valid grid points
00481   if (nd == 1) {
00482     return;
00483 
00484   } else if (nd == 2) {
00485 
00486     update_div_local(ix);
00487     ix[0]++; wrap(ix);
00488     update_div_local(ix);
00489     ix[1]++; wrap(ix);
00490     update_div_local(ix);
00491     ix[0]--; wrap(ix);
00492     update_div_local(ix);
00493 
00494   } else if (nd == 3) {
00495 
00496     for (i = 0; i<2; i++) {
00497       ix[1] = ix0[1];
00498       for (j = 0; j<2; j++) {
00499         ix[2] = ix0[2];
00500         for (k = 0; k<2; k++) {
00501           wrap(ix);
00502           update_div_local(ix);
00503           ix[2]++;
00504         }
00505         ix[1]++;
00506       }
00507       ix[0]++;
00508     }
00509   }
00510 }
00511 
00512 void integrate_potential::get_grad(cvm::real * g, std::vector<int> &ix)
00513 {
00514   size_t count, i;
00515   bool edge = gradients->wrap_edge(ix); // Detect edge if non-PBC
00516 
00517   if (gradients->samples) {
00518     count = gradients->samples->value(ix);
00519   } else {
00520     count = 1;
00521   }
00522 
00523   if (!edge && count) {
00524     cvm::real const *grad = &(gradients->value(ix));
00525     cvm::real const fact = 1.0 / count;
00526     for ( i = 0; i<nd; i++ ) {
00527       g[i] = fact * grad[i];
00528     }
00529   } else {
00530     for ( i = 0; i<nd; i++ ) {
00531       g[i] = 0.0;
00532     }
00533   }
00534 }
00535 
00536 void integrate_potential::update_div_local(const std::vector<int> &ix0)
00537 {
00538   const size_t linear_index = address(ix0);
00539   int i, j, k;
00540   std::vector<int> ix = ix0;
00541 
00542   if (nd == 2) {
00543     // gradients at grid points surrounding the current scalar grid point
00544     cvm::real g00[2], g01[2], g10[2], g11[2];
00545 
00546     get_grad(g11, ix);
00547     ix[0] = ix0[0] - 1;
00548     get_grad(g01, ix);
00549     ix[1] = ix0[1] - 1;
00550     get_grad(g00, ix);
00551     ix[0] = ix0[0];
00552     get_grad(g10, ix);
00553 
00554     divergence[linear_index] = ((g10[0]-g00[0] + g11[0]-g01[0]) / widths[0]
00555                               + (g01[1]-g00[1] + g11[1]-g10[1]) / widths[1]) * 0.5;
00556   } else if (nd == 3) {
00557     cvm::real gc[24]; // stores 3d gradients in 8 contiguous bins
00558     int index = 0;
00559 
00560     ix[0] = ix0[0] - 1;
00561     for (i = 0; i<2; i++) {
00562       ix[1] = ix0[1] - 1;
00563       for (j = 0; j<2; j++) {
00564         ix[2] = ix0[2] - 1;
00565         for (k = 0; k<2; k++) {
00566           get_grad(gc + index, ix);
00567           index += 3;
00568           ix[2]++;
00569         }
00570         ix[1]++;
00571       }
00572       ix[0]++;
00573     }
00574 
00575     divergence[linear_index] =
00576      ((gc[3*4]-gc[0] + gc[3*5]-gc[3*1] + gc[3*6]-gc[3*2] + gc[3*7]-gc[3*3])
00577       / widths[0]
00578     + (gc[3*2+1]-gc[0+1] + gc[3*3+1]-gc[3*1+1] + gc[3*6+1]-gc[3*4+1] + gc[3*7+1]-gc[3*5+1])
00579       / widths[1]
00580     + (gc[3*1+2]-gc[0+2] + gc[3*3+2]-gc[3*2+2] + gc[3*5+2]-gc[3*4+2] + gc[3*7+2]-gc[3*6+2])
00581       / widths[2]) * 0.25;
00582   }
00583 }
00584 
00585 
00588 void integrate_potential::atimes(const std::vector<cvm::real> &A, std::vector<cvm::real> &LA)
00589 {
00590   if (nd == 2) {
00591     // DIMENSION 2
00592 
00593     size_t index, index2;
00594     int i, j;
00595     cvm::real fact;
00596     const cvm::real ffx = 1.0 / (widths[0] * widths[0]);
00597     const cvm::real ffy = 1.0 / (widths[1] * widths[1]);
00598     const int h = nx[1];
00599     const int w = nx[0];
00600     // offsets for 4 reference points of the Laplacian stencil
00601     int xm = -h;
00602     int xp =  h;
00603     int ym = -1;
00604     int yp =  1;
00605 
00606     // NOTE on performance: this version is slightly sub-optimal because
00607     // it contains two double loops on the core of the array (for x and y terms)
00608     // The slightly faster version is in commit 0254cb5a2958cb2e135f268371c4b45fad34866b
00609     // yet it is much uglier, and probably horrible to extend to dimension 3
00610     // All terms in the matrix are assigned (=) during the x loops, then updated (+=)
00611     // with the y (and z) contributions
00612 
00613 
00614     // All x components except on x edges
00615     index = h; // Skip first column
00616 
00617     // Halve the term on y edges (if any) to preserve symmetry of the Laplacian matrix
00618     // (Long Chen, Finite Difference Methods, UCI, 2017)
00619     fact = periodic[1] ? 1.0 : 0.5;
00620 
00621     for (i=1; i<w-1; i++) {
00622       // Full range of j, but factor may change on y edges (j == 0 and j == h-1)
00623       LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00624       index++;
00625       for (j=1; j<h-1; j++) {
00626         LA[index] = ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00627         index++;
00628       }
00629       LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00630       index++;
00631     }
00632     // Edges along x (x components only)
00633     index = 0L; // Follows left edge
00634     index2 = h * static_cast<size_t>(w - 1); // Follows right edge
00635     if (periodic[0]) {
00636       xm =  h * (w - 1);
00637       xp =  h;
00638       fact = periodic[1] ? 1.0 : 0.5;
00639       LA[index]  = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00640       LA[index2] = fact * ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
00641       index++;
00642       index2++;
00643       for (j=1; j<h-1; j++) {
00644         LA[index]  = ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00645         LA[index2] = ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
00646         index++;
00647         index2++;
00648       }
00649       LA[index]  = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00650       LA[index2] = fact * ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
00651     } else {
00652       xm = -h;
00653       xp =  h;
00654       fact = periodic[1] ? 1.0 : 0.5; // Halve in corners in full PBC only
00655       // lower corner, "j == 0"
00656       LA[index]  = fact * ffx * (A[index + xp] - A[index]);
00657       LA[index2] = fact * ffx * (A[index2 + xm] - A[index2]);
00658       index++;
00659       index2++;
00660       for (j=1; j<h-1; j++) {
00661         // x gradient (+ y term of laplacian, calculated below)
00662         LA[index]  = ffx * (A[index + xp] - A[index]);
00663         LA[index2] = ffx * (A[index2 + xm] - A[index2]);
00664         index++;
00665         index2++;
00666       }
00667       // upper corner, j == h-1
00668       LA[index]  = fact * ffx * (A[index + xp] - A[index]);
00669       LA[index2] = fact * ffx * (A[index2 + xm] - A[index2]);
00670     }
00671 
00672     // Now adding all y components
00673     // All y components except on y edges
00674     index = 1; // Skip first element (in first row)
00675 
00676     fact = periodic[0] ? 1.0 : 0.5; // for i == 0
00677     for (i=0; i<w; i++) {
00678       // Factor of 1/2 on x edges if non-periodic
00679       if (i == 1) fact = 1.0;
00680       if (i == w - 1) fact = periodic[0] ? 1.0 : 0.5;
00681       for (j=1; j<h-1; j++) {
00682         LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
00683         index++;
00684       }
00685       index += 2; // skip the edges and move to next column
00686     }
00687     // Edges along y (y components only)
00688     index = 0L; // Follows bottom edge
00689     index2 = h - 1; // Follows top edge
00690     if (periodic[1]) {
00691       fact = periodic[0] ? 1.0 : 0.5;
00692       ym = h - 1;
00693       yp = 1;
00694       LA[index]  += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
00695       LA[index2] += fact * ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
00696       index  += h;
00697       index2 += h;
00698       for (i=1; i<w-1; i++) {
00699         LA[index]  += ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
00700         LA[index2] += ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
00701         index  += h;
00702         index2 += h;
00703       }
00704       LA[index]  += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
00705       LA[index2] += fact * ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
00706     } else {
00707       ym = -1;
00708       yp = 1;
00709       fact = periodic[0] ? 1.0 : 0.5; // Halve in corners in full PBC only
00710       // Left corner
00711       LA[index]  += fact * ffy * (A[index + yp] - A[index]);
00712       LA[index2] += fact * ffy * (A[index2 + ym] - A[index2]);
00713       index  += h;
00714       index2 += h;
00715       for (i=1; i<w-1; i++) {
00716         // y gradient (+ x term of laplacian, calculated above)
00717         LA[index]  += ffy * (A[index + yp] - A[index]);
00718         LA[index2] += ffy * (A[index2 + ym] - A[index2]);
00719         index  += h;
00720         index2 += h;
00721       }
00722       // Right corner
00723       LA[index]  += fact * ffy * (A[index + yp] - A[index]);
00724       LA[index2] += fact * ffy * (A[index2 + ym] - A[index2]);
00725     }
00726 
00727   } else if (nd == 3) {
00728     // DIMENSION 3
00729 
00730     int i, j, k;
00731     size_t index, index2;
00732     cvm::real fact = 1.0;
00733     const cvm::real ffx = 1.0 / (widths[0] * widths[0]);
00734     const cvm::real ffy = 1.0 / (widths[1] * widths[1]);
00735     const cvm::real ffz = 1.0 / (widths[2] * widths[2]);
00736     const int h = nx[2]; // height
00737     const int d = nx[1]; // depth
00738     const int w = nx[0]; // width
00739     // offsets for 6 reference points of the Laplacian stencil
00740     int xm = -d * h;
00741     int xp =  d * h;
00742     int ym = -h;
00743     int yp =  h;
00744     int zm = -1;
00745     int zp =  1;
00746 
00747     cvm::real factx = periodic[0] ? 1 : 0.5; // factor to be applied on x edges
00748     cvm::real facty = periodic[1] ? 1 : 0.5; // same for y
00749     cvm::real factz = periodic[2] ? 1 : 0.5; // same for z
00750     cvm::real ifactx = 1 / factx;
00751     cvm::real ifacty = 1 / facty;
00752     cvm::real ifactz = 1 / factz;
00753 
00754     // All x components except on x edges
00755     index = d * static_cast<size_t>(h); // Skip left slab
00756     fact = facty * factz;
00757     for (i=1; i<w-1; i++) {
00758       for (j=0; j<d; j++) { // full range of y
00759         if (j == 1) fact *= ifacty;
00760         if (j == d-1) fact *= facty;
00761         LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00762         index++;
00763         fact *= ifactz;
00764         for (k=1; k<h-1; k++) { // full range of z
00765           LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00766           index++;
00767         }
00768         fact *= factz;
00769         LA[index] = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00770         index++;
00771       }
00772     }
00773     // Edges along x (x components only)
00774     index = 0L; // Follows left slab
00775     index2 = static_cast<size_t>(d) * h * (w - 1); // Follows right slab
00776     if (periodic[0]) {
00777       xm =  d * h * (w - 1);
00778       xp =  d * h;
00779       fact = facty * factz;
00780       for (j=0; j<d; j++) {
00781         if (j == 1) fact *= ifacty;
00782         if (j == d-1) fact *= facty;
00783         LA[index]  = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00784         LA[index2] = fact * ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
00785         index++;
00786         index2++;
00787         fact *= ifactz;
00788         for (k=1; k<h-1; k++) {
00789           LA[index]  = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00790           LA[index2] = fact * ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
00791           index++;
00792           index2++;
00793         }
00794         fact *= factz;
00795         LA[index]  = fact * ffx * (A[index + xm] + A[index + xp] - 2.0 * A[index]);
00796         LA[index2] = fact * ffx * (A[index2 - xp] + A[index2 - xm] - 2.0 * A[index2]);
00797         index++;
00798         index2++;
00799       }
00800     } else {
00801       xm = -d * h;
00802       xp =  d * h;
00803       fact = facty * factz;
00804       for (j=0; j<d; j++) {
00805         if (j == 1) fact *= ifacty;
00806         if (j == d-1) fact *= facty;
00807         LA[index]  = fact * ffx * (A[index + xp] - A[index]);
00808         LA[index2] = fact * ffx * (A[index2 + xm] - A[index2]);
00809         index++;
00810         index2++;
00811         fact *= ifactz;
00812         for (k=1; k<h-1; k++) {
00813           // x gradient (+ y, z terms of laplacian, calculated below)
00814           LA[index]  = fact * ffx * (A[index + xp] - A[index]);
00815           LA[index2] = fact * ffx * (A[index2 + xm] - A[index2]);
00816           index++;
00817           index2++;
00818         }
00819         fact *= factz;
00820         LA[index]  = fact * ffx * (A[index + xp] - A[index]);
00821         LA[index2] = fact * ffx * (A[index2 + xm] - A[index2]);
00822         index++;
00823         index2++;
00824       }
00825     }
00826 
00827     // Now adding all y components
00828     // All y components except on y edges
00829     index = h; // Skip first column (in front slab)
00830     fact = factx * factz;
00831     for (i=0; i<w; i++) { // full range of x
00832       if (i == 1) fact *= ifactx;
00833       if (i == w-1) fact *= factx;
00834       for (j=1; j<d-1; j++) {
00835         LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
00836         index++;
00837         fact *= ifactz;
00838         for (k=1; k<h-1; k++) {
00839           LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
00840           index++;
00841         }
00842         fact *= factz;
00843         LA[index] += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
00844         index++;
00845       }
00846       index += 2 * h; // skip columns in front and back slabs
00847     }
00848     // Edges along y (y components only)
00849     index = 0L; // Follows front slab
00850     index2 = h * static_cast<size_t>(d - 1); // Follows back slab
00851     if (periodic[1]) {
00852       ym = h * (d - 1);
00853       yp = h;
00854       fact = factx * factz;
00855       for (i=0; i<w; i++) {
00856         if (i == 1) fact *= ifactx;
00857         if (i == w-1) fact *= factx;
00858         LA[index]  += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
00859         LA[index2] += fact * ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
00860         index++;
00861         index2++;
00862         fact *= ifactz;
00863         for (k=1; k<h-1; k++) {
00864           LA[index]  += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
00865           LA[index2] += fact * ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
00866           index++;
00867           index2++;
00868         }
00869         fact *= factz;
00870         LA[index]  += fact * ffy * (A[index + ym] + A[index + yp] - 2.0 * A[index]);
00871         LA[index2] += fact * ffy * (A[index2 - yp] + A[index2 - ym] - 2.0 * A[index2]);
00872         index++;
00873         index2++;
00874         index  += h * static_cast<size_t>(d - 1);
00875         index2 += h * static_cast<size_t>(d - 1);
00876       }
00877     } else {
00878       ym = -h;
00879       yp =  h;
00880       fact = factx * factz;
00881       for (i=0; i<w; i++) {
00882         if (i == 1) fact *= ifactx;
00883         if (i == w-1) fact *= factx;
00884         LA[index]  += fact * ffy * (A[index + yp] - A[index]);
00885         LA[index2] += fact * ffy * (A[index2 + ym] - A[index2]);
00886         index++;
00887         index2++;
00888         fact *= ifactz;
00889         for (k=1; k<h-1; k++) {
00890           // y gradient (+ x, z terms of laplacian, calculated above and below)
00891           LA[index]  += fact * ffy * (A[index + yp] - A[index]);
00892           LA[index2] += fact * ffy * (A[index2 + ym] - A[index2]);
00893           index++;
00894           index2++;
00895         }
00896         fact *= factz;
00897         LA[index]  += fact * ffy * (A[index + yp] - A[index]);
00898         LA[index2] += fact * ffy * (A[index2 + ym] - A[index2]);
00899         index++;
00900         index2++;
00901         index  += h * static_cast<size_t>(d - 1);
00902         index2 += h * static_cast<size_t>(d - 1);
00903       }
00904     }
00905 
00906   // Now adding all z components
00907     // All z components except on z edges
00908     index = 1; // Skip first element (in bottom slab)
00909     fact = factx * facty;
00910     for (i=0; i<w; i++) { // full range of x
00911       if (i == 1) fact *= ifactx;
00912       if (i == w-1) fact *= factx;
00913       for (k=1; k<h-1; k++) {
00914         LA[index] += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
00915         index++;
00916       }
00917       fact *= ifacty;
00918       index += 2; // skip edge slabs
00919       for (j=1; j<d-1; j++) { // full range of y
00920         for (k=1; k<h-1; k++) {
00921           LA[index] += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
00922           index++;
00923         }
00924         index += 2; // skip edge slabs
00925       }
00926       fact *= facty;
00927       for (k=1; k<h-1; k++) {
00928         LA[index] += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
00929         index++;
00930       }
00931       index += 2; // skip edge slabs
00932     }
00933     // Edges along z (z components onlz)
00934     index = 0; // Follows bottom slab
00935     index2 = h - 1; // Follows top slab
00936     if (periodic[2]) {
00937       zm = h - 1;
00938       zp = 1;
00939       fact = factx * facty;
00940       for (i=0; i<w; i++) {
00941         if (i == 1) fact *= ifactx;
00942         if (i == w-1) fact *= factx;
00943         LA[index]  += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
00944         LA[index2] += fact * ffz * (A[index2 - zp] + A[index2 - zm] - 2.0 * A[index2]);
00945         index  += h;
00946         index2 += h;
00947         fact *= ifacty;
00948         for (j=1; j<d-1; j++) {
00949           LA[index]  += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
00950           LA[index2] += fact * ffz * (A[index2 - zp] + A[index2 - zm] - 2.0 * A[index2]);
00951           index  += h;
00952           index2 += h;
00953         }
00954         fact *= facty;
00955         LA[index]  += fact * ffz * (A[index + zm] + A[index + zp] - 2.0 * A[index]);
00956         LA[index2] += fact * ffz * (A[index2 - zp] + A[index2 - zm] - 2.0 * A[index2]);
00957         index  += h;
00958         index2 += h;
00959       }
00960     } else {
00961       zm = -1;
00962       zp = 1;
00963       fact = factx * facty;
00964       for (i=0; i<w; i++) {
00965         if (i == 1) fact *= ifactx;
00966         if (i == w-1) fact *= factx;
00967         LA[index]  += fact * ffz * (A[index + zp] - A[index]);
00968         LA[index2] += fact * ffz * (A[index2 + zm] - A[index2]);
00969         index  += h;
00970         index2 += h;
00971         fact *= ifacty;
00972         for (j=1; j<d-1; j++) {
00973           // z gradient (+ x, y terms of laplacian, calculated above)
00974           LA[index]  += fact * ffz * (A[index + zp] - A[index]);
00975           LA[index2] += fact * ffz * (A[index2 + zm] - A[index2]);
00976           index  += h;
00977           index2 += h;
00978         }
00979         fact *= facty;
00980         LA[index]  += fact * ffz * (A[index + zp] - A[index]);
00981         LA[index2] += fact * ffz * (A[index2 + zm] - A[index2]);
00982         index  += h;
00983         index2 += h;
00984       }
00985     }
00986   }
00987 }
00988 
00989 
00990 /*
00992 void integrate_potential::asolve(const std::vector<cvm::real> &b, std::vector<cvm::real> &x)
00993 {
00994   for (size_t i=0; i<int(nt); i++) {
00995     x[i] = b[i] * inv_lap_diag[i]; // Jacobi preconditioner - little benefit in tests so far
00996   }
00997   return;
00998 }*/
00999 
01000 
01001 // b : RHS of equation
01002 // x : initial guess for the solution; output is solution
01003 // itol : convergence criterion
01004 void integrate_potential::nr_linbcg_sym(const std::vector<cvm::real> &b, std::vector<cvm::real> &x, const cvm::real &tol,
01005   const int itmax, int &iter, cvm::real &err)
01006 {
01007   cvm::real ak,akden,bk,bkden,bknum,bnrm;
01008   const cvm::real EPS=1.0e-14;
01009   int j;
01010   std::vector<cvm::real> p(nt), r(nt), z(nt);
01011 
01012   iter=0;
01013   atimes(x,r);
01014   for (j=0;j<int(nt);j++) {
01015     r[j]=b[j]-r[j];
01016   }
01017   bnrm=l2norm(b);
01018   if (bnrm < EPS) {
01019     return; // Target is zero, will break relative error calc
01020   }
01021 //   asolve(r,z); // precon
01022   bkden = 1.0;
01023   while (iter < itmax) {
01024     ++iter;
01025     for (bknum=0.0,j=0;j<int(nt);j++) {
01026       bknum += r[j]*r[j];  // precon: z[j]*r[j]
01027     }
01028     if (iter == 1) {
01029       for (j=0;j<int(nt);j++) {
01030         p[j] = r[j];  // precon: p[j] = z[j]
01031       }
01032     } else {
01033       bk=bknum/bkden;
01034       for (j=0;j<int(nt);j++) {
01035         p[j] = bk*p[j] + r[j];  // precon:  bk*p[j] + z[j]
01036       }
01037     }
01038     bkden = bknum;
01039     atimes(p,z);
01040     for (akden=0.0,j=0;j<int(nt);j++) {
01041       akden += z[j]*p[j];
01042     }
01043     ak = bknum/akden;
01044     for (j=0;j<int(nt);j++) {
01045       x[j] += ak*p[j];
01046       r[j] -= ak*z[j];
01047     }
01048 //     asolve(r,z);  // precon
01049     err = l2norm(r)/bnrm;
01050     if (cvm::debug())
01051       std::cout << "iter=" << std::setw(4) << iter+1 << std::setw(12) << err << std::endl;
01052     if (err <= tol)
01053       break;
01054   }
01055 }
01056 
01057 cvm::real integrate_potential::l2norm(const std::vector<cvm::real> &x)
01058 {
01059   size_t i;
01060   cvm::real sum = 0.0;
01061   for (i=0;i<x.size();i++)
01062     sum += x[i]*x[i];
01063   return sqrt(sum);
01064 }

Generated on Fri Oct 4 02:43:43 2024 for VMD (current) by doxygen1.2.14 written by Dimitri van Heesch, © 1997-2002