Main Page   Namespace List   Class Hierarchy   Alphabetical List   Compound List   File List   Namespace Members   Compound Members   File Members   Related Pages  

Matrix4.C

Go to the documentation of this file.
00001 /***************************************************************************
00002  *cr                                                                       
00003  *cr            (C) Copyright 1995-2019 The Board of Trustees of the           
00004  *cr                        University of Illinois                       
00005  *cr                         All Rights Reserved                        
00006  *cr                                                                   
00007  ***************************************************************************/
00008 
00009 /***************************************************************************
00010  * RCS INFORMATION:
00011  *
00012  *      $RCSfile: Matrix4.C,v $
00013  *      $Author: johns $        $Locker:  $             $State: Exp $
00014  *      $Revision: 1.57 $       $Date: 2019/09/27 05:29:26 $
00015  *
00016  ***************************************************************************
00017  * DESCRIPTION:
00018  *
00019  * 4 x 4 Matrix, used for a transformation matrix.
00020  *
00021  ***************************************************************************/
00022 
00023 #include <math.h>
00024 #include <string.h>
00025 #include <stdio.h>
00026 #include "Matrix4.h"
00027 #include "utilities.h"
00028 
00029 // constructor, for the case when an array of floating-point numbers is given
00030 Matrix4::Matrix4(const float *m) {
00031   memcpy((void *)mat, (const void *)m, 16*sizeof(float));
00032 }
00033 
00034 // multiplies a 3D point (first arg) by the Matrix, returns in second arg
00035 void Matrix4::multpoint3d(const float opoint[3], float npoint[3]) const {
00036 #if 0
00037     // should try re-testing this formulation to see if it outperforms
00038     // the old one, without introducing floating point imprecision
00039     float tmp[3];
00040     float itmp3 = 1.0f / (opoint[0]*mat[3] + opoint[1]*mat[7] + 
00041                           opoint[2]*mat[11] + mat[15]);
00042     npoint[0]=itmp3 * (opoint[0]*mat[0] + opoint[1]*mat[4] + opoint[2]*mat[ 8] + mat[12]);
00043     npoint[1]=itmp3 * (opoint[0]*mat[1] + opoint[1]*mat[5] + opoint[2]*mat[ 9] + mat[13]);
00044     npoint[2]=itmp3 * (opoint[0]*mat[2] + opoint[1]*mat[6] + opoint[2]*mat[10] + mat[14]);
00045 #else
00046     float tmp[3];
00047     float itmp3 = 1.0f / (opoint[0]*mat[3] + opoint[1]*mat[7] +
00048                           opoint[2]*mat[11] + mat[15]);
00049     tmp[0] = itmp3*opoint[0];
00050     tmp[1] = itmp3*opoint[1];
00051     tmp[2] = itmp3*opoint[2];
00052     npoint[0]=tmp[0]*mat[0] + tmp[1]*mat[4] + tmp[2]*mat[ 8] + itmp3*mat[12];
00053     npoint[1]=tmp[0]*mat[1] + tmp[1]*mat[5] + tmp[2]*mat[ 9] + itmp3*mat[13];
00054     npoint[2]=tmp[0]*mat[2] + tmp[1]*mat[6] + tmp[2]*mat[10] + itmp3*mat[14];
00055 #endif
00056 }
00057 
00058 
00059 // multiplies a 3D point array (2nd arg) by the Matrix, returns in 3rd arg
00060 void Matrix4::multpointarray_3d(int numpts, const float *opoints, float *npoints) const {
00061   int i, numpts3;
00062   numpts3=numpts*3;
00063   for (i=0; i<numpts3; i+=3) {
00064     multpoint3d(&opoints[i], &npoints[i]);
00065   }
00066 }
00067 
00068 
00069 // multiplies a 3D norm (first arg) by the Matrix, returns in second arg
00070 // This differs from point multiplication in that the translatation operations
00071 // are ignored.
00072 void Matrix4::multnorm3d(const float onorm[3], float nnorm[3]) const {
00073   float tmp[4];
00074 
00075   tmp[0]=onorm[0]*mat[0] + onorm[1]*mat[4] + onorm[2]*mat[8];
00076   tmp[1]=onorm[0]*mat[1] + onorm[1]*mat[5] + onorm[2]*mat[9];
00077   tmp[2]=onorm[0]*mat[2] + onorm[1]*mat[6] + onorm[2]*mat[10];
00078   tmp[3]=onorm[0]*mat[3] + onorm[1]*mat[7] + onorm[2]*mat[11];
00079   float itmp = 1.0f / sqrtf(tmp[0]*tmp[0] + tmp[1]*tmp[1] + tmp[2]*tmp[2]);
00080   nnorm[0]=tmp[0]*itmp;
00081   nnorm[1]=tmp[1]*itmp;
00082   nnorm[2]=tmp[2]*itmp;
00083 }
00084 
00085 
00086 // multiplies a 3D texture plane equation by the Matrix
00087 // This differs from point multiplication in that the translatation operations
00088 // are ignored.
00089 void Matrix4::multplaneeq3d(const float onorm[3], float nnorm[3]) const {
00090   float xvec[3] = {1.0f, 0.0f, 0.0f};
00091   float yvec[3] = {0.0f, 1.0f, 0.0f};
00092   float zvec[3] = {0.0f, 0.0f, 1.0f};
00093   float xvnew[3];
00094   float yvnew[3];
00095   float zvnew[3];
00096 
00097   multnorm3d(xvec, xvnew);
00098   multnorm3d(yvec, yvnew);
00099   multnorm3d(zvec, zvnew);
00100 
00101   int i;
00102   for (i=0; i<3; i++) {
00103     nnorm[i] = onorm[0] * xvnew[i] + onorm[1] * yvnew[i] + onorm[2] * zvnew[i];
00104   }
00105 }
00106 
00107 
00108 // multiplies a 4D point (first arg) by the Matrix, returns in second arg
00109 void Matrix4::multpoint4d(const float opoint[4], float npoint[4]) const {
00110   npoint[0]=opoint[0]*mat[0]+opoint[1]*mat[4]+opoint[2]*mat[8]+opoint[3]*mat[12];
00111   npoint[1]=opoint[0]*mat[1]+opoint[1]*mat[5]+opoint[2]*mat[9]+opoint[3]*mat[13];
00112   npoint[2]=opoint[0]*mat[2]+opoint[1]*mat[6]+opoint[2]*mat[10]+opoint[3]*mat[14];
00113   npoint[3]=opoint[0]*mat[3]+opoint[1]*mat[7]+opoint[2]*mat[11]+opoint[3]*mat[15];
00114 }
00115 
00116 
00117 // clears the matrix (resets it to identity)
00118 void Matrix4::identity(void) {
00119   memset((void *)mat, 0, 16*sizeof(float));
00120   mat[0]=1.0f;
00121   mat[5]=1.0f;
00122   mat[10]=1.0f;
00123   mat[15]=1.0f;
00124 }
00125 
00126 
00127 // sets the matrix so all items are the given constant value
00128 void Matrix4::constant(float f) {
00129   for (int i=0; i<16; mat[i++] = f); 
00130 }
00131 
00132 // return the inverse of this matrix, that is, 
00133 // the inverse of the rotation, the inverse of the scaling, and 
00134 // the opposite of the translation vector.
00135 #define MATSWAP(a,b) {temp=(a);(a)=(b);(b)=temp;}
00136 int Matrix4::inverse(void) {
00137 
00138   float matr[4][4], ident[4][4];
00139   int i, j, k, l, ll;
00140   int icol=0, irow=0;
00141   int indxc[4], indxr[4], ipiv[4];
00142   float big, dum, pivinv, temp;
00143  
00144   for (i=0; i<4; i++) {
00145     for (j=0; j<4; j++) {
00146       matr[i][j] = mat[4*i+j];
00147       ident[i][j] = 0.0f;
00148     }
00149     ident[i][i]=1.0f;
00150   } 
00151   // Gauss-jordan elimination with full pivoting.  Yes, folks, a 
00152   // GL Matrix4 is inverted like any other, since the identity is 
00153   // still the identity.
00154   
00155   // from numerical recipies in C second edition, pg 39
00156 
00157   for(j=0;j<=3;j++) ipiv[j] = 0;
00158   for(i=0;i<=3;i++) {
00159     big=0.0;
00160     for (j=0;j<=3;j++) {
00161       if(ipiv[j] != 1) {
00162         for (k=0;k<=3;k++) {
00163           if(ipiv[k] == 0) {
00164             if(fabs(matr[j][k]) >= big) {
00165               big = (float) fabs(matr[j][k]);
00166               irow=j;
00167               icol=k;
00168             }
00169           } else if (ipiv[k] > 1) return 1;
00170         } 
00171       }
00172     }
00173     ++(ipiv[icol]);
00174     if (irow != icol) {
00175       for (l=0;l<=3;l++) MATSWAP(matr[irow][l],matr[icol][l]);
00176       for (l=0;l<=3;l++) MATSWAP(ident[irow][l],ident[icol][l]);
00177     }
00178     indxr[i]=irow;
00179     indxc[i]=icol;
00180     if(matr[icol][icol] == 0.0f) return 1; 
00181     pivinv = 1.0f / matr[icol][icol];
00182     matr[icol][icol]=1.0f;
00183     for (l=0;l<=3;l++) matr[icol][l] *= pivinv;
00184     for (l=0;l<=3;l++) ident[icol][l] *= pivinv;
00185     for (ll=0;ll<=3;ll++) {
00186       if (ll != icol) {
00187         dum=matr[ll][icol];
00188         matr[ll][icol]=0.0f;
00189         for (l=0;l<=3;l++) matr[ll][l] -= matr[icol][l]*dum;
00190         for (l=0;l<=3;l++) ident[ll][l] -= ident[icol][l]*dum;
00191       }
00192     }
00193   }
00194   for (l=3;l>=0;l--) {
00195     if (indxr[l] != indxc[l]) {
00196       for (k=0;k<=3;k++) {
00197         MATSWAP(matr[k][indxr[l]],matr[k][indxc[l]]);
00198       }
00199     }
00200   }
00201   for (i=0; i<4; i++) 
00202     for (j=0; j<4; j++)
00203       mat[4*i+j] = matr[i][j];
00204   return 0;
00205 }
00206       
00207 void Matrix4::transpose() {
00208   float tmp[16];
00209   int i,j;
00210   for(i=0;i<4;i++) {
00211     for(j=0;j<4;j++) {
00212       tmp[4*i+j] = mat[i+4*j];
00213     }
00214   }
00215   for(i=0;i<16;i++)
00216     mat[i] = tmp[i];
00217 }
00218 
00219 // replaces this matrix with the given one
00220 void Matrix4::loadmatrix(const Matrix4& m) {
00221   memcpy((void *)mat, (const void *)m.mat, 16*sizeof(float));
00222 }
00223 
00224 // premultiply the matrix by the given matrix
00225 void Matrix4::multmatrix(const Matrix4& m) {
00226   float tmp[4];
00227   for (int j=0; j<4; j++) {
00228     tmp[0] = mat[j];
00229     tmp[1] = mat[4+j];
00230     tmp[2] = mat[8+j]; 
00231     tmp[3] = mat[12+j];
00232     for (int i=0; i<4; i++) {
00233       mat[4*i+j] = m.mat[4*i  ]*tmp[0] + m.mat[4*i+1]*tmp[1] +
00234                    m.mat[4*i+2]*tmp[2] + m.mat[4*i+3]*tmp[3]; 
00235     }
00236   } 
00237 }
00238 
00239 // performs a rotation around an axis (char == 'x', 'y', or 'z')
00240 // angle is in degrees
00241 void Matrix4::rot(float a, char axis) {
00242   Matrix4 m;                    // create identity matrix
00243   float angle = (float)DEGTORAD(a);
00244 
00245   float sa, ca;
00246   sincosf(angle, &sa, &ca);
00247 
00248   if (axis == 'x') {
00249     m.mat[ 0] = 1.0f;
00250     m.mat[ 5] = ca;
00251     m.mat[10] = m.mat[5];
00252     m.mat[ 6] = sa;
00253     m.mat[ 9] = -m.mat[6];
00254   } else if (axis == 'y') {
00255     m.mat[ 0] = ca;
00256     m.mat[ 5] = 1.0f;
00257     m.mat[10] = m.mat[0];
00258     m.mat[ 2] = -sa;
00259     m.mat[ 8] = -m.mat[2];
00260   } else if (axis == 'z') {
00261     m.mat[ 0] = ca;
00262     m.mat[ 5] = m.mat[0];
00263     m.mat[10] = 1.0f;
00264     m.mat[ 1] = sa;
00265     m.mat[ 4] = -m.mat[1];
00266   }
00267 
00268   // If there was an error, m is identity so we can multiply anyway.
00269   multmatrix(m);
00270 }
00271 
00272 // performs rotation around a given vector
00273 void Matrix4::rotate_axis(const float axis[3], float angle) {
00274   transvec(axis[0], axis[1], axis[2]);
00275   rot((float) (RADTODEG(angle)), 'x');
00276   transvecinv(axis[0], axis[1], axis[2]);
00277 }
00278 
00279 // applies the transformation needed to bring the x axis along the given vector. 
00280 void Matrix4::transvec(float x, float y, float z) {
00281   double theta = atan2(y,x);
00282   double length = sqrt(y*y + x*x);
00283   double phi = atan2((double) z, length);
00284   rot((float) RADTODEG(theta), 'z');
00285   rot((float) RADTODEG(-phi), 'y');
00286 }
00287 
00288 // applies the transformation needed to bring the given vector to the x axis.
00289 void Matrix4::transvecinv(float x, float y, float z) {
00290   double theta = atan2(y,x);
00291   double length = sqrt(y*y + x*x);
00292   double phi = atan2((double) z, length);
00293   rot((float) RADTODEG(phi), 'y');
00294   rot((float) RADTODEG(-theta), 'z');
00295 }
00296 
00297 // performs a translation
00298 void Matrix4::translate(float x, float y, float z) {
00299   Matrix4 m;            // create identity matrix
00300   m.mat[12] = x;
00301   m.mat[13] = y;
00302   m.mat[14] = z;
00303   multmatrix(m);
00304 }
00305 
00306 // performs scaling
00307 void Matrix4::scale(float x, float y, float z) {
00308   Matrix4 m;            // create identity matrix
00309   m.mat[0] = x;
00310   m.mat[5] = y;
00311   m.mat[10] = z;
00312   multmatrix(m);
00313 }
00314 
00315 // sets this matrix to represent a window perspective
00316 void Matrix4::window(float left, float right, float bottom, 
00317                          float top, float nearval, float farval) {
00318 
00319   constant(0.0);                // initialize this matrix to 0
00320   mat[0] = (2.0f*nearval) / (right-left);
00321   mat[5] = (2.0f*nearval) / (top-bottom);
00322   mat[8] = (right+left) / (right-left);
00323   mat[9] = (top+bottom) / (top-bottom);
00324   mat[10] = -(farval+nearval) / (farval-nearval);
00325   mat[11] = -1.0f;
00326   mat[14] = -(2.0f*farval*nearval) / (farval-nearval);
00327 }
00328 
00329 
00330 // sets this matrix to a 3D orthographic matrix
00331 void Matrix4::ortho(float left, float right, float bottom,
00332                         float top, float nearval, float farval) {
00333 
00334   constant(0.0);                // initialize this matrix to 0
00335   mat[0] =  2.0f / (right-left);
00336   mat[5] =  2.0f / (top-bottom);
00337   mat[10] = -2.0f / (farval-nearval);
00338   mat[12] = -(right+left) / (right-left);
00339   mat[13] = -(top+bottom) / (top-bottom);
00340   mat[14] = -(farval+nearval) / (farval-nearval);
00341   mat[15] = 1.0;
00342 }
00343 
00344 
00345 // sets this matrix to a 2D orthographic matrix
00346 void Matrix4::ortho2(float left, float right, float bottom, float top) {
00347 
00348   constant(0.0);                // initialize this matrix to 0
00349   mat[0] =  2.0f / (right-left);
00350   mat[5] =  2.0f / (top-bottom);
00351   mat[10] = -1.0f;
00352   mat[12] = -(right+left) / (right-left);
00353   mat[13] = -(top+bottom) / (top-bottom);
00354   mat[15] =  1.0f;
00355 }
00356 
00357 /* This subroutine defines a viewing transformation with the eye at the point
00358  * (vx,vy,vz) looking at the point (px,py,pz).  Twist is the right-hand
00359  * rotation about this line.  The resultant matrix is multiplied with
00360  * the top of the transformation stack and then replaces it.  Precisely,
00361  * lookat does:
00362  * lookat = trans(-vx,-vy,-vz)*rotate(theta,y)*rotate(phi,x)*rotate(-twist,z)
00363  */
00364  void Matrix4::lookat(float vx, float vy, float vz, float px, float py,
00365                          float pz, short twist) {
00366   Matrix4 m(0.0);
00367   float tmp;
00368 
00369   /* pre multiply stack by rotate(-twist,z) */
00370   rot(-twist / 10.0f,'z');
00371 
00372   tmp = sqrtf((px-vx)*(px-vx) + (py-vy)*(py-vy) + (pz-vz)*(pz-vz));
00373   m.mat[0] = 1.0;
00374   m.mat[5] = sqrtf((px-vx)*(px-vx) + (pz-vz)*(pz-vz)) / tmp;
00375   m.mat[6] = (vy-py) / tmp;
00376   m.mat[9] = -m.mat[6];
00377   m.mat[10] = m.mat[5];
00378   m.mat[15] = 1.0;
00379   multmatrix(m);
00380 
00381   /* premultiply by rotate(theta,y) */
00382   m.constant(0.0);
00383   tmp = sqrtf((px-vx)*(px-vx) + (pz-vz)*(pz-vz));
00384   m.mat[0] = (vz-pz) / tmp;
00385   m.mat[5] = 1.0;
00386   m.mat[10] = m.mat[0];
00387   m.mat[15] = 1.0;
00388   m.mat[2] = -(px-vx) / tmp;
00389   m.mat[8] = -m.mat[2];
00390   multmatrix(m);
00391 
00392   /* premultiply by trans(-vx,-vy,-vz) */
00393   translate(-vx,-vy,-vz);
00394 }
00395 
00396  // Transform 3x3 into 4x4 matrix:
00397  void trans_from_rotate(const float mat3[9], Matrix4 *mat4) {
00398   int i;
00399   for (i=0; i<3; i++) {
00400     mat4->mat[0+i] = mat3[3*i];
00401     mat4->mat[4+i] = mat3[3*i+1];
00402     mat4->mat[8+i] = mat3[3*i+2];
00403   }
00404 }
00405 
00406 // Print a matrix for debugging purpose
00407 void print_Matrix4(const Matrix4 *mat4) {
00408   int i, j;
00409   for (i=0; i<4; i++) {
00410     for (j=0; j<4; j++) {
00411       printf("%f ", mat4->mat[4*j+i]);
00412     }
00413     printf("\n");
00414   }
00415   printf("\n");
00416 }
00417 

Generated on Fri Oct 4 02:44:12 2024 for VMD (current) by doxygen1.2.14 written by Dimitri van Heesch, © 1997-2002