next up previous
Next: Semi-empirical parameter generation: SPARTAN Up: VMD Tutorial Previous: The CHARMM22 Force Field

Subsections

Missing Parameter Development

We now have a nonstandard amino acid side group attached to the hisH protein. As is very often the case with nonstandard groups, this residue does not have a full set of parameters describing it.When presented with a nonstandard group, the first task is to determine exactly which parameters are already known, and which will need to be developed from scratch. In this case, only the atoms forming the connection between the ligand glutamine and CYS84 are likely to contain unknown parameters, as this connection is special to the reaction mechanism of hisH. In order to assign initial values to the missing Charmm22 parameters, we will use the program MOE. These values will be checked and redefined using semi-empirical calculations will be performed with the quantum chemistry package Spartan. Finally we will incorporate the newly created parameters into a preexisting Charmm22 parameter file so that we can perform a minimization of hisH with NAMD2. When developing the new parameters for this nonstandard residue, we will neglect any solvent effects and consider the molecule to be in the gas phase. The glutamine-cysteine linkage is defined as a new residue in the Charmm22 topology file with the name CYG. We will parameterize a truncated form of CYG in order to simulate step III. The truncated CYG has the following formula: CH3-S-CO-CH3 and its IUPAC name is methyl thioethanoate.

An Introduction to the Charmm22 Topology File

Below is the final topology file entry for the CYG residue. This exercise will show you how to develop the values appearing in it.

RESI CYG 0.00
GROUP
ATOM N    NH1    -0.47  !     |
ATOM HN   H       0.31  !  HN-N
ATOM CA   CT1     0.07  !     |   HB1
ATOM HA   HB      0.09  !     |   |
GROUP                   !  HA-CA--CB--SG
ATOM CB   CT2    -0.11  !     |   |   |
ATOM HB1  HA      0.09  !     |   HB2 |
ATOM HB2  HA      0.09  !   O=C       |
ATOM SG   S      -0.07  !     |        \
!ATOM HG1  HS      0.16 !               \
GROUP                   !                \
ATOM CDG   CC      0.55 !                 \
ATOM OE1   O      -0.55 !                  \
GROUP                    !     HN2G         \
ATOM CGG   CT2    -0.18  !      |            \
ATOM HG1G  HA      0.09  ! HN1G-NG   HB1G HG1G\
ATOM HG2G  HA      0.09  !      |    |     |   \
GROUP                    !  HAG-CAG--CBG--CGG--CDG=OE1
ATOM CBG   CT2    -0.18  !      |    |     |
ATOM HB1G  HA      0.09  !      |    HB2G HG2G
ATOM HB2G  HA      0.09  !  O1G=CG
GROUP                    !      |
ATOM CG    CD      0.75  !      O2G-HO2G
ATOM O1G   OB     -0.55
ATOM O2G   OH1    -0.61
ATOM HO2G  H       0.44
ATOM CAG   CT1    -0.12
ATOM HAG   HB      0.09
ATOM NG    NH3     -0.62
ATOM HN1G  HC       0.31
ATOM HN2G HC      0.31
GROUP
ATOM C    C       0.51
ATOM O    O      -0.51
BOND CB CA   SG CB   N HN  N  CA
BOND C  CA   C +N  CA HA  CB HB1
BOND CB HB2
BOND SG CDG  CDG CGG CGG HG1G CGG HG2G
BOND CGG CBG CBG HB1G CBG HB2G
BOND CBG CAG CAG HAG CAG NG CAG CG
BOND NG HN1G NG HN2G CG O2G O2G HO2G
DOUBLE O  C CDG OE1  CG O1G
IMPR N -C CA HN  C CA +N O
IMPR CDG OE1 SG CGG  CG O1G O2G CAG
DONOR HN N
DONOR HN2G NG HN1G NG HO2G O2G
ACCEPTOR O C OE1G CDG O1G CG O2G CG NG CAG
Note the following features in the Charmm22 topology file:
\framebox[\textwidth]{
\begin{minipage}{.2\textwidth}
\includegraphics[width...
... torsional terms be the same
for both functional groups? }
\end{minipage}
}

An Introduction to the Charmm22 Parameter File

Below is an excerpt from a Charmm22 parameter file that shows some required parameters necessary for a minimization run. The force field below contains the final missing heavy atom parameters for CYG and can be used as a reference for the assessment of the parameters you develop in the next few exercises. Due to time constraints, for the following exercises, we will only perform semi-empirical calculations. The final parameter set was developed using a higher level of theory (an ab initio Hartree-Fock calculation with the 6-31G** basis set). Therefore the final parameter values presented below may differ slightly than the ones you determine.
\framebox[\textwidth]{
\begin{minipage}{.2\textwidth}
\includegraphics[width...
...tane
(both systems have the same number of heavy atoms)? }
\end{minipage}
}
BONDS
!
!V(bond) = Kb(b - b0)**2
!
!Kb: kcal/mole/A**2
!b0: A
!
!atom type Kb          b0
! Modified for CYG residue after 6-31G** geometry optimization Felix
S    CC   240.000      1.7814 ! ALLOW   ALI SUL ION

ANGLES
!
!V(angle) = Ktheta(Theta - Theta0)**2
!
!V(Urey-Bradley) = Kub(S - S0)**2
!
!Ktheta: kcal/mole/rad**2
!Theta0: degrees
!Kub: kcal/mole/A**2 (Urey-Bradley)
!S0: A
!
!atom types     Ktheta    Theta0   Kub     S0
!

! Modified for CYG residue after 6-31G** geometry optimization
 CT2 S    CC    34.000    100.2000 ! ALLOW   ALI SUL ION

 CT2  CC   S     50.000    114.5000 ! ALLOW   ALI SUL ION

 O    CC   S     75.000    122.2000 ! ALLOW   ALI SUL ION
Note the following features in the Charmm22 parameter file:
The values for the nonbonded interactions are the standard VDW parameters in Charmm22 required for the Lennard-Jones potential of your atom types.

Assigning Initial Values for Unknown Parameters with MOE

We will begin parameterizing CYG in this exercise. First you have to build the truncated CYG residue. MOE will use pattern recognition on the Charmm22 force field and the atom types to assign initial values to any unknown parameters. Afterwards, we will set up a minimization run with our newly developed parameters and calculate one dihedral rotational barrier in the truncated CYG.

Exercise 4, step 1: Building CYG

Open the Builder in the right column. MOE has pre-defined templates for many functional groups. Here, we are going to build a chain of C-S-CO-C (hydrogens will be added automatically). In the Molecule Builder: Click on C
Now to add the next atom, click on the very end of one of the hydrogens. When you click with the left mouse button on a hydrogen, a pink arrowhead will appear indicating that it is selected.
Click on S
Repeat this sequence, making sure to select a hydrogen on the previous group is selected before adding a new group
Click on Close to exit the builder and deselect all atoms by clicking on empty space in the MOE window. Change the rendering style to ball and stick by:
Render: Ball and Stick
Experiment with different rendering styles. An example of ball and stick is shown in Figure 4.
Figure 4: The truncated residue CYG, as it appears in MOE.
\begin{figure}
\begin{center}
\latex{
\includegraphics[scale=0.5]{FIGS/moe_mole}
}
\end{center}
\end{figure}

Exercise 4, step 2: Specifying the Force Field

Now it is time to specify the force field and options we want to use for our calculations. As mentioned previously, we will perform our calculations in gas phase, i.e., no explicit or implicit solvation models. The dielectric constant used for electrostatic interactions will be set to one with no distance-dependency. Compute: Mechanics: Potential Control
Make sure that the loaded force field is charmm22.ff and click Close.

Exercise 4, step 3: Labelling Atoms

Next, display the atom types and partial charges of the atoms.
Label: MM Type
Label: Charges
You will notice a charge of zero on each atom because we have not loaded in the Charmm22 force field. The atom types are displayed together with the partial charges. Note that the atom types for the terminal methyl groups (CT3) are different from the oxygen bound carbon atom (C). They correspond to carbon atoms that are electronically different. Note also that all hydrogen atoms have the same atom type (HA). All the hydrogens are electronically equivalent, since all are bonded to sp3 carbons.
Figure 5: What your potential setup box should look like.
\begin{figure}
\begin{center}
\latex{
\includegraphics[scale=0.5]{FIGS/potential}
}
\end{center}
\end{figure}

Exercise 4, step 4: Assigning Partial Charges

The partial charges of all the atoms need to be "assigned." In order to do this, click on:
Compute: Partial Charges: Force Field Charges
The charges are now defined according to the Charmm22 force field for the corresponding atoms. Note that all equivalent hydrogens have the same charge, and that the total charge of CYG sums to zero as expected (you can do this by selecting Label: Charge.

Exercise 4, step 5: Viewing / Printing Parameter Reports

You can look at the parameters for the truncated CYG molecule by clicking Commands in the righthand column and then clicking:
Compute: Mechanics: Parameter Report
Browse through the window to look at the parameters. The parameters are copied below. Additional descriptions of the force field can be found under the HELP menu in the main window.
loading force field '$MOE/lib/charmm22.ff'
            E      str      ang      stb      tor      oop      ele      vdw
  sol
ALL:  216.023  185.641    2.489    0.000    8.629    0.000    0.000   19.263
0.000
loading forcefield '$MOE/lib/charmm22.ff'
FORCE FIELD PARAMETERIZATION SUMMARY
Mon May 12 19:47:45 2003

The following sections summarize the force field parameters used
for bond stretch, angle bending, proper and improper torsions. Van
der Waals and hydrogen bond parameters are not listed.

ATOM SUMMARY

All atoms relevant to the summary are listed below.  Each atom is
listed on a separate line that contains its name, element symbol,
ionization, hybridization, partial charge, mass (amu), radius,
and its potential type.  If the potential type is not known, then
the line is marked a >.

  Chain   1: <noname>

    Residue   1:   *   0  none

          1: CT3  C    +0 sp3   q=-0.220 m=12.0110 r=2.06 MM=CT3
          2: S    S    +0 sp3   q=-0.057 m=32.0660 r=2.00 MM=S
          3: HA   H    +0 sp    q= 0.090 m= 1.0080 r=1.32 MM=HA
          4: HA   H    +0 sp    q= 0.090 m= 1.0080 r=1.32 MM=HA
          5: HA   H    +0 sp    q= 0.090 m= 1.0080 r=1.32 MM=HA
          6: C    C    +0 sp2   q= 0.517 m=12.0110 r=2.00 MM=C
          7: CT3  C    +0 sp3   q=-0.270 m=12.0110 r=2.06 MM=CT3
          8: HA   H    +0 sp    q= 0.090 m= 1.0080 r=1.32 MM=HA
          9: HA   H    +0 sp    q= 0.090 m= 1.0080 r=1.32 MM=HA
         10: HA   H    +0 sp    q= 0.090 m= 1.0080 r=1.32 MM=HA
         11: O    O    +0 sp2   q=-0.510 m=15.9990 r=1.70 MM=O


BOND STRETCH (1-2) PARAMETERIZATION SUMMARY

Each bond stretch interaction is listed below. For each
interaction, the atom numbers and atom names of the atoms involved
are printed along with the equilibrium bond length (A) and the
quartic force constants (kcal/mol/A**i).

   A1   A2    N1   N2    len     k2       k3       k4
  ---- ----  ---- ----  ----- -------- -------- --------
     1    5  CT3  HA    1.111  322.000    0.000    0.000
     1    2  CT3  S     1.816  240.000    0.000    0.000
>    2    6  S    C     1.732  264.210 -528.420  616.490
     3    1  HA   CT3   1.111  322.000    0.000    0.000
     4    1  HA   CT3   1.111  322.000    0.000    0.000
     7   10  CT3  HA    1.111  322.000    0.000    0.000
     7    9  CT3  HA    1.111  322.000    0.000    0.000
     7    6  CT3  C     1.490  250.000    0.000    0.000
     8    7  HA   CT3   1.111  322.000    0.000    0.000
    11    6  O    C     1.230  620.000    0.000    0.000

ANGLE BEND (1-3) PARAMETERIZATION SUMMARY

Each bond angle interaction is listed below. For each interaction,
the atom numbers and atom names of the atoms involved are printed
along with the equilibrium bond angle (deg) and the quartic force
constants (kcal/mol/deg**i).

   A1   A2   A3    N1   N2   N3    ang     k2      k3      k4
  ---- ---- ----  ---- ---- ----  ----- ------- ------- -------
     5    1    2  HA   CT3  S     111.3  46.100   0.000   0.000
     4    1    5  HA   CT3  HA    108.4  35.500   0.000   0.000
     4    1    3  HA   CT3  HA    108.4  35.500   0.000   0.000
     4    1    2  HA   CT3  S     111.3  46.100   0.000   0.000
     3    1    5  HA   CT3  HA    108.4  35.500   0.000   0.000
     3    1    2  HA   CT3  S     111.3  46.100   0.000   0.000
>    1    2    6  CT3  S    C     120.0  63.449 -25.447   0.000
     7    6   11  CT3  C    O     121.0  80.000   0.000   0.000
>    7    6    2  CT3  C    S     120.0  66.643 -26.728   0.000
>   11    6    2  O    C    S     120.0  83.697 -33.568   0.000
    10    7    9  HA   CT3  HA    108.4  35.500   0.000   0.000
    10    7    6  HA   CT3  C     109.5  33.000   0.000   0.000
     9    7    6  HA   CT3  C     109.5  33.000   0.000   0.000
     8    7   10  HA   CT3  HA    108.4  35.500   0.000   0.000
     8    7    9  HA   CT3  HA    108.4  35.500   0.000   0.000
     8    7    6  HA   CT3  C     109.5  33.000   0.000   0.000


TORSION (1-4) PARAMETERIZATION SUMMARY

Each torsion involving 4 atoms bonded in a sequence is listed
once.

   A1   A2   A3   A4    N1   N2   N3   N4     v1      v2     v3     v4     v5
  ---- ---- ---- ----  ---- ---- ---- ----  ------ ------- ------ ------ ------
>    5    1    2    6  HA   CT3  S    C      0.000   0.000  0.000  0.000  0.000
>    4    1    2    6  HA   CT3  S    C      0.000   0.000  0.000  0.000  0.000
>    3    1    2    6  HA   CT3  S    C      0.000   0.000  0.000  0.000  0.000
>    1    2    6    7  CT3  S    C    CT3    0.000  -2.372  0.000  0.000  0.000
>    1    2    6   11  CT3  S    C    O      0.000  -2.372  0.000  0.000  0.000
    10    7    6   11  HA   CT3  C    O      0.000   0.000  0.000  0.000  0.000
>   10    7    6    2  HA   CT3  C    S      0.000   0.000  0.000  0.000  0.000
     9    7    6   11  HA   CT3  C    O      0.000   0.000  0.000  0.000  0.000
>    9    7    6    2  HA   CT3  C    S      0.000   0.000  0.000  0.000  0.000
     8    7    6   11  HA   CT3  C    O      0.000   0.000  0.000  0.000  0.000
>    8    7    6    2  HA   CT3  C    S      0.000   0.000  0.000  0.000  0.000
\framebox[\textwidth]{
\begin{minipage}{.2\textwidth}
\includegraphics[width...
...d we be calculating with a quantum chemistry
calculation?}
\end{minipage}
}

A Closer Look at Dihedral Parameters

Note the dihedral (torsional) parameters. The analytical form of a dihedral term in the CHARMM force field:
\begin{displaymath}
V_\phi = k_\phi \left[ 1+ \left( \cos \left(n\phi-\delta\right)\right)\right]
\end{displaymath} (2)

where $\phi$ is the value of the dihedral angle, $k_\phi$ is the force constant, n is the symmetry of the rotor (e.g. 3 for methyl groups) and $\delta$ is the phase. MOE follows this analytical form, but lists the parameters in a different format: The first four numbers are the atom numbers in the molecule. The four atom types are the atom types for which a torsional term is defined and will be calculated. Then follow five numerical values. These values correspond to the $k_\phi$ constant of the analytical form given above. Each of the five terms correspond to n = 1 to 5 in the analytical function given above, i.e., up to five values of n can be used simultaneously, each with a different force constant. The n = 1 term, with a positive $C_1$ constant, has a single minimum at 180 degrees or the trans conformation. A negative value of $C_1$ will create a maximum at 180 degrees, and therefore create a minimum at the cis conformation. The n = 2 term, with a positive $C_2$ value, creates minima at 90 and 270 degrees. A negative $C_2$ value creates minima at 0 and 180 degrees, which is useful for enforcing planarity. The n = 3 term, with a positive $C_3$, creates maxima at 0, 120 and 240 degrees, which will emphasize the staggered conformation of sp3 carbons. A negative $C_3$ will emphasize the eclipsed conformation. For instance, the line:
9    8    5    1  HA   CT2  CT2  CT3    0.000   0.000  0.195  0.000  0.000
could also be written, for these four atoms:
\begin{displaymath}
V_\phi = 0.195\cdot\left[1+\cos\left(3\phi\right)\right]
\end{displaymath} (3)

Since we only have a force constant for n=3, the value of the force constant is 0.195, and the phase is zero (d = 0 since we have +0.195 and not 0.195). A sample Matlab plot of this function is presented below. In standard CHARMM notation, the exact same information would be written as follows:
HA   CT2  CT2  CT3       3         0.195         0
i.e., the four atom types, the symmetry of the rotor (n), the force constant ($k_\theta$) and the phase (d). Be sure to save your generated CYG molecule for later reference:
File: Save as: File format PDB
Figure 6: Matlab plot of Eq. (3) presented above.
\begin{figure}
\begin{center}
\latex{
\includegraphics[scale=0.5]{FIGS/dihedral}
}
\end{center}
\end{figure}


next up previous
Next: Semi-empirical parameter generation: SPARTAN Up: VMD Tutorial Previous: The CHARMM22 Force Field
vmd@ks.uiuc.edu