next up previous contents
Next: Hierarchy equations of motion Up: Introduction and theory Previous: Modeling the quantum system   Contents

Correlation functions

The bath correlation functions $C_{ab}(t)$ determines how the environment fluctuations affect the system through the couplings $F_a$. The bath correlation functions are given as
\begin{displaymath}
C_{ab}(t) = \left< u_a(t)u_b(0)\right>_B = {\rm tr} _B\left\...
...rm tr} _B\left\{\exp\left(-\beta H_B\right)\right\}} \right\}.
\end{displaymath} (10)

Here $u_a(t)$ evolve according to the interaction representation with respect to $H_{SB}$ and $\beta=1/T$ is the inverse temperature. The correlation function tells us how a perturbation of the environment caused by the coupling $F_a$ affects the system at a later time through the coupling $F_b$. The correlation functions are usually specified through the Fourier-Laplace transform of the spectral density $J_a(\omega)$ as
\begin{displaymath}
C_{ab}(t) = \frac{1}{\pi} \int_0^{\infty} d\omega J_{ab}\left(\omega\right) \frac{e^{-i \omega t}}{1-e^{-\beta\hbar\omega}},
\end{displaymath} (11)

where,
\begin{displaymath}
J_{ab}(\omega) = \sum_\xi \frac{\pi}{2} \sum_{\xi} \frac{c_{a\xi} c_{b\xi}}{m_\xi \omega_\xi} \delta(\omega-\omega_\xi).
\end{displaymath} (12)

The HEOM arise by assuming a form of bath correlation functions given by

\begin{displaymath}
C_{ab}(t) = \sum_{k=0}^K c_{abk} e^{- \left(\nu_{abk}+i\Omega_{abk}\right) t}.
\end{displaymath} (13)

The huge computational expense of such arbitrary correlation functions (especially with large M and K) restricts us to forms with $C_{ab}(t) = \delta_{ab} C_a(t)$ and $\Omega_{abk}=0$. This gives the bath correlation functions as
\begin{displaymath}
C_a(t) = \sum_{k=0}^\infty c_{ak} e^{- \nu_{ak}t },
\end{displaymath} (14)

which corresponds to spectral densities of the Drude form given by
\begin{displaymath}
J_a(\omega) = 2 \lambda_a\frac{ \omega\gamma_a } {\omega^2 + \gamma_a^2}.
\end{displaymath} (15)

The Drude spectral density, and employing a Matsubara expansion of $1/({1-\exp({-\beta\hbar\omega}}))$ is Eq. 11, results in correlation function coefficients
$\displaystyle c_{a0}$ $\textstyle =$ $\displaystyle {\gamma_a \lambda_a}\left[ \cot (\beta \hbar \gamma_a/2) - i\right]$ (16)
$\displaystyle c_{ak\ge1}$ $\textstyle =$ $\displaystyle \frac{4 \lambda_a \gamma_a}{\beta \hbar} \frac{\nu_{ak}}{\nu_{ak}^2-\gamma_a^2}.$ (17)

and damping constants $\nu_{a0} = \gamma_a$, $\nu_{ak\ge1} = 2\pi k/\beta\hbar$. The infinite number of Matsubara terms $\nu_{ak}$ in Eq. 14 is truncated to a finite $K$ where for all $k>K$, $\nu_{ak}\exp(-\nu_{ak}t)\approx \delta(t)$.

The parameters needed to model the system are summarized in Table 1.

Table 1: Parameters defining model of quantum system
Parameter Meaning Units
$N$ Number of states ${\left\vert i \right>}$  
$E_i$ Energy level of state ${\left\vert i \right>}$ [Energy]
$V_{ij}$ Interaction between states ${\left\vert i \right>}$ and ${\left\vert j \right>}$ [Energy]
$M$ Number of system-environment coupling terms  
$f_{ai}$ Elements of $F_a$ specifying system-environment coupling  
$\lambda_a$ Strength of coupling $F_a$ [Energy]
$\gamma_a$ Response frequency of environment from $F_a$ coupling [time]$^{-1}$
$K$ Number of Matsubara terms to include  
$L_T$ Hierarchy truncation level  


next up previous contents
Next: Hierarchy equations of motion Up: Introduction and theory Previous: Modeling the quantum system   Contents
http://www.ks.uiuc.edu/Research/phi