NAMD
erf.C
Go to the documentation of this file.
1 /*
2  * Copied from OpenBSD project (src/lib/libm/src/s_erf.c)
3  * Specialized for 32-bit little endian architectures.
4  */
5 
6 /* Real math libraries provide erf(), CUDA also provides an implementation. */
7 #if defined(WIN32) && !defined(NAMD_CUDA) && !defined(NAMD_HIP)
8 
9 /*
10  * ====================================================
11  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
12  *
13  * Developed at SunPro, a Sun Microsystems, Inc. business.
14  * Permission to use, copy, modify, and distribute this
15  * software is freely granted, provided that this notice
16  * is preserved.
17  * ====================================================
18  */
19 
20 /* double erf(double x)
21  * double erfc(double x)
22  * x
23  * 2 |\
24  * erf(x) = --------- | exp(-t*t)dt
25  * sqrt(pi) \|
26  * 0
27  *
28  * erfc(x) = 1-erf(x)
29  * Note that
30  * erf(-x) = -erf(x)
31  * erfc(-x) = 2 - erfc(x)
32  *
33  * Method:
34  * 1. For |x| in [0, 0.84375]
35  * erf(x) = x + x*R(x^2)
36  * erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
37  * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
38  * where R = P/Q where P is an odd poly of degree 8 and
39  * Q is an odd poly of degree 10.
40  * -57.90
41  * | R - (erf(x)-x)/x | <= 2
42  *
43  *
44  * Remark. The formula is derived by noting
45  * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
46  * and that
47  * 2/sqrt(pi) = 1.128379167095512573896158903121545171688
48  * is close to one. The interval is chosen because the fix
49  * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
50  * near 0.6174), and by some experiment, 0.84375 is chosen to
51  * guarantee the error is less than one ulp for erf.
52  *
53  * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
54  * c = 0.84506291151 rounded to single (24 bits)
55  * erf(x) = sign(x) * (c + P1(s)/Q1(s))
56  * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
57  * 1+(c+P1(s)/Q1(s)) if x < 0
58  * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
59  * Remark: here we use the taylor series expansion at x=1.
60  * erf(1+s) = erf(1) + s*Poly(s)
61  * = 0.845.. + P1(s)/Q1(s)
62  * That is, we use rational approximation to approximate
63  * erf(1+s) - (c = (single)0.84506291151)
64  * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
65  * where
66  * P1(s) = degree 6 poly in s
67  * Q1(s) = degree 6 poly in s
68  *
69  * 3. For x in [1.25,1/0.35(~2.857143)],
70  * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
71  * erf(x) = 1 - erfc(x)
72  * where
73  * R1(z) = degree 7 poly in z, (z=1/x^2)
74  * S1(z) = degree 8 poly in z
75  *
76  * 4. For x in [1/0.35,28]
77  * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
78  * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
79  * = 2.0 - tiny (if x <= -6)
80  * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
81  * erf(x) = sign(x)*(1.0 - tiny)
82  * where
83  * R2(z) = degree 6 poly in z, (z=1/x^2)
84  * S2(z) = degree 7 poly in z
85  *
86  * Note1:
87  * To compute exp(-x*x-0.5625+R/S), let s be a single
88  * precision number and s := x; then
89  * -x*x = -s*s + (s-x)*(s+x)
90  * exp(-x*x-0.5626+R/S) =
91  * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
92  * Note2:
93  * Here 4 and 5 make use of the asymptotic series
94  * exp(-x*x)
95  * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
96  * x*sqrt(pi)
97  * We use rational approximation to approximate
98  * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
99  * Here is the error bound for R1/S1 and R2/S2
100  * |R1/S1 - f(x)| < 2**(-62.57)
101  * |R2/S2 - f(x)| < 2**(-61.52)
102  *
103  * 5. For inf > x >= 28
104  * erf(x) = sign(x) *(1 - tiny) (raise inexact)
105  * erfc(x) = tiny*tiny (raise underflow) if x > 0
106  * = 2 - tiny if x<0
107  *
108  * 7. Special case:
109  * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
110  * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
111  * erfc/erf(NaN) is NaN
112  */
113 
114 #include <math.h>
115 
116 extern "C" {
117 
118 /* assume 32 bit int */
119 
120 typedef int int32_t;
121 typedef unsigned int u_int32_t;
122 
123 /* assume little endian */
124 typedef union
125 {
126  double value;
127  struct
128  {
129  u_int32_t lsw;
130  u_int32_t msw;
131  } parts;
132 } ieee_double_shape_type;
133 
134 
135 /* Get the more significant 32 bit int from a double. */
136 
137 #define GET_HIGH_WORD(i,d) \
138 do { \
139  ieee_double_shape_type gh_u; \
140  gh_u.value = (d); \
141  (i) = gh_u.parts.msw; \
142 } while (0)
143 
144 
145 /* Set the less significant 32 bits of a double from an int. */
146 
147 #define SET_LOW_WORD(d,v) \
148 do { \
149  ieee_double_shape_type sl_u; \
150  sl_u.value = (d); \
151  sl_u.parts.lsw = (v); \
152  (d) = sl_u.value; \
153 } while (0)
154 
155 
156 /* Eliminate reference to internal OpenBSD call */
157 
158 #define __ieee754_exp(X) exp(X)
159 
160 
161 static const double
162 tiny = 1e-300,
163 half= 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */
164 one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
165 two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
166  /* c = (float)0.84506291151 */
167 erx = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
168 /*
169  * Coefficients for approximation to erf on [0,0.84375]
170  */
171 efx = 1.28379167095512586316e-01, /* 0x3FC06EBA, 0x8214DB69 */
172 efx8= 1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
173 pp0 = 1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
174 pp1 = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
175 pp2 = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
176 pp3 = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
177 pp4 = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
178 qq1 = 3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
179 qq2 = 6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
180 qq3 = 5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
181 qq4 = 1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
182 qq5 = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
183 /*
184  * Coefficients for approximation to erf in [0.84375,1.25]
185  */
186 pa0 = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
187 pa1 = 4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
188 pa2 = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
189 pa3 = 3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
190 pa4 = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
191 pa5 = 3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
192 pa6 = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
193 qa1 = 1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
194 qa2 = 5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
195 qa3 = 7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
196 qa4 = 1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
197 qa5 = 1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
198 qa6 = 1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
199 /*
200  * Coefficients for approximation to erfc in [1.25,1/0.35]
201  */
202 ra0 = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
203 ra1 = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
204 ra2 = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
205 ra3 = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
206 ra4 = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
207 ra5 = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
208 ra6 = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
209 ra7 = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
210 sa1 = 1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
211 sa2 = 1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
212 sa3 = 4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
213 sa4 = 6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
214 sa5 = 4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
215 sa6 = 1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
216 sa7 = 6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
217 sa8 = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
218 /*
219  * Coefficients for approximation to erfc in [1/.35,28]
220  */
221 rb0 = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
222 rb1 = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
223 rb2 = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
224 rb3 = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
225 rb4 = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
226 rb5 = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
227 rb6 = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
228 sb1 = 3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
229 sb2 = 3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
230 sb3 = 1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
231 sb4 = 3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
232 sb5 = 2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
233 sb6 = 4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
234 sb7 = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
235 
236  double erf(double x)
237 {
238  int32_t hx,ix,i;
239  double R,S,P,Q,s,y,z,r;
240  GET_HIGH_WORD(hx,x);
241  ix = hx&0x7fffffff;
242  if(ix>=0x7ff00000) { /* erf(nan)=nan */
243  i = ((u_int32_t)hx>>31)<<1;
244  return (double)(1-i)+one/x; /* erf(+-inf)=+-1 */
245  }
246 
247  if(ix < 0x3feb0000) { /* |x|<0.84375 */
248  if(ix < 0x3e300000) { /* |x|<2**-28 */
249  if (ix < 0x00800000)
250  return 0.125*(8.0*x+efx8*x); /*avoid underflow */
251  return x + efx*x;
252  }
253  z = x*x;
254  r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
255  s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
256  y = r/s;
257  return x + x*y;
258  }
259  if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
260  s = fabs(x)-one;
261  P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
262  Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
263  if(hx>=0) return erx + P/Q; else return -erx - P/Q;
264  }
265  if (ix >= 0x40180000) { /* inf>|x|>=6 */
266  if(hx>=0) return one-tiny; else return tiny-one;
267  }
268  x = fabs(x);
269  s = one/(x*x);
270  if(ix< 0x4006DB6E) { /* |x| < 1/0.35 */
271  R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
272  ra5+s*(ra6+s*ra7))))));
273  S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
274  sa5+s*(sa6+s*(sa7+s*sa8)))))));
275  } else { /* |x| >= 1/0.35 */
276  R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
277  rb5+s*rb6)))));
278  S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
279  sb5+s*(sb6+s*sb7))))));
280  }
281  z = x;
282  SET_LOW_WORD(z,0);
283  r = __ieee754_exp(-z*z-0.5625)*__ieee754_exp((z-x)*(z+x)+R/S);
284  if(hx>=0) return one-r/x; else return r/x-one;
285 }
286 
287  double erfc(double x)
288 {
289  int32_t hx,ix;
290  double R,S,P,Q,s,y,z,r;
291  GET_HIGH_WORD(hx,x);
292  ix = hx&0x7fffffff;
293  if(ix>=0x7ff00000) { /* erfc(nan)=nan */
294  /* erfc(+-inf)=0,2 */
295  return (double)(((u_int32_t)hx>>31)<<1)+one/x;
296  }
297 
298  if(ix < 0x3feb0000) { /* |x|<0.84375 */
299  if(ix < 0x3c700000) /* |x|<2**-56 */
300  return one-x;
301  z = x*x;
302  r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
303  s = one+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
304  y = r/s;
305  if(hx < 0x3fd00000) { /* x<1/4 */
306  return one-(x+x*y);
307  } else {
308  r = x*y;
309  r += (x-half);
310  return half - r ;
311  }
312  }
313  if(ix < 0x3ff40000) { /* 0.84375 <= |x| < 1.25 */
314  s = fabs(x)-one;
315  P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
316  Q = one+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
317  if(hx>=0) {
318  z = one-erx; return z - P/Q;
319  } else {
320  z = erx+P/Q; return one+z;
321  }
322  }
323  if (ix < 0x403c0000) { /* |x|<28 */
324  x = fabs(x);
325  s = one/(x*x);
326  if(ix< 0x4006DB6D) { /* |x| < 1/.35 ~ 2.857143*/
327  R=ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
328  ra5+s*(ra6+s*ra7))))));
329  S=one+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
330  sa5+s*(sa6+s*(sa7+s*sa8)))))));
331  } else { /* |x| >= 1/.35 ~ 2.857143 */
332  if(hx<0&&ix>=0x40180000) return two-tiny;/* x < -6 */
333  R=rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
334  rb5+s*rb6)))));
335  S=one+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
336  sb5+s*(sb6+s*sb7))))));
337  }
338  z = x;
339  SET_LOW_WORD(z,0);
340  r = __ieee754_exp(-z*z-0.5625)*
341  __ieee754_exp((z-x)*(z+x)+R/S);
342  if(hx>0) return r/x; else return two-r/x;
343  } else {
344  if(hx>0) return tiny*tiny; else return two-tiny;
345  }
346 }
347 
348 }
349 
350 #else /* WIN32 */
351 
352 int dummy_erf(int i) { return i; } /* avoid empty translation unit */
353 
354 #endif /* WIN32 */
355 
int dummy_erf(int i)
Definition: erf.C:352
gridSize z
#define Q
Definition: msm_defn.h:35
gridSize y
gridSize x