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Abstract—Many of the continuing scientific advances achieved
through computational biology are predicated on the availability
of ongoing increases in computational power required for detailed
simulation and analysis of cellular processes on biologically-
relevant timescales. A critical challenge facing the development
of future exascale supercomputer systems is the development
of new computing hardware and associated scientific applica-
tions that dramatically improve upon the energy efficiency of
existing solutions, while providing increased simulation, analy-
sis, and visualization performance. Mobile computing platforms
have recently become powerful enough to support interactive
molecular visualization tasks that were previously only possible
on laptops and workstations, creating future opportunities for
their convenient use for meetings, remote collaboration, and
as head mounted displays for immersive stereoscopic viewing.
We describe early experiences adapting several biomolecular
simulation and analysis applications for emerging heterogeneous
computing platforms that combine power-efficient system-on-
chip multi-core CPUs with high-performance massively parallel
GPUs. We present low-cost power monitoring instrumentation
that provides sufficient temporal resolution to evaluate the
power consumption of individual CPU algorithms and GPU
kernels. We compare the performance and energy efficiency
of scientific applications running on emerging platforms with
results obtained on traditional platforms, identify hardware and
algorithmic performance bottlenecks that affect the usability of
these platforms, and describe avenues for improving both the
hardware and applications in pursuit of the needs of molecular
modeling tasks on mobile devices and future exascale computers.

Keywords-Molecular modeling; Heterogeneous architectures;
GPU computing; High-performance computing; Mobile comput-
ing; Energy efficiency;

I. INTRODUCTION

Computer simulations provide a powerful tool for probing

the dynamics of cellular processes at temporal and spatial

resolutions that are not accessible to experimental methods

alone. These studies require tremendous computational capa-

bilities for both the simulations and the analysis and visual-

ization of the results, made possible through the availability

of clusters and supercomputers and parallel simulation and

analysis software that makes efficient use of them. Petascale

supercomputers are beginning to stretch the practical limits to

space, power consumption, and cooling, with leading systems

such as ORNL Titan and NCSA Blue Waters requiring on

Fig. 1. Photograph of power monitoring instrumentation attached to the
CARMA development board, while running VMD molecular orbital bench-
mark tests described in Sec. IV-C, and Table V.

the order of 10MW of electrical power. It is expected that

many exascale systems may be constrained to power levels

on the order of 20MW, and a critical challenge facing the

development of these systems is the development of new

computing hardware and associated scientific applications that

dramatically improve upon the energy efficiency of existing

solutions, while providing increased simulation, analysis, and

visualization performance. Exascale computing will require

reduction of data movement and awareness of data locality

within operating systems, applications, and algorithms [1].

Graphics processing units (GPUs) have evolved from their

origins as fixed-function hardware accelerators solely intended

for computer graphics and image processing workloads into

much more flexible massively parallel computing devices

that can be programmed for use by general purpose sci-

entific applications [2], [3], and for molecular modeling in

particular [4], [5]. Due to their massively parallel hardware

architecture, GPUs are capable of substantially outperforming

conventional multi-core CPUs on applications that contain

large amounts of fine-grain parallelism, and in many cases they

also significantly improve upon the energy efficiency achieved

by conventional hardware platforms [6]. GPUs have become



an effective tool for acceleration of a wide variety of computa-

tionally demanding molecular modeling applications [4], [7],

[8], [9], [3], [10], [11], [12], [13], [5], [14], and these successes

have contributed to the use of GPUs in the top performing

supercomputers in the world.

Contemporary GPUs are not entirely self-sufficient; they

depend on a host computer to run operating system soft-

ware, and for execution of low-parallelism or latency-sensitive

code that is poorly suited to execution on massively parallel

hardware. The evolution of mobile phones into ubiquitous

browsing, gaming, and communication devices has created

tremendous demand for power-efficient system-on-chip (SoC)

processor designs that integrate GPU hardware on-chip, or that

are tightly coupled with external GPUs. ARM R© processors are

currently one of the leading CPU architectures used in mobile

phones and tablet computers, with billions of ARM processors

currently in the field.

The performance of SoCs and mobile computing platforms

has steadily increased in recent years. In combination with

integrated or discrete GPUs, these systems are now capa-

ble of performing molecular visualization and analysis tasks

that have previously required conventional laptop or desktop

computers. The small physical size and portability of these

hardware platforms presents unique opportunities for their

use as convenient multi-modal displays, as client systems

for remote visualization of molecular structures, and as self-

contained systems driving head mounted displays (HMDs) for

immersive stereoscopic viewing of molecular structures.

We describe early experiences adapting several biomolec-

ular simulation and analysis applications for heterogeneous

computing platforms based on the combination of multi-core

ARM SoCs with GPUs. We specifically evaluate emerging

heterogeneous computing platforms that combine ARM multi-

core CPUs with both mobile GPUs and state-of-the-art discrete

GPUs, with the goal of identifying performance and energy

efficiency bottlenecks in hardware and software on these

platforms, and their applicability to key computational biology

applications.

Lattice Microbes (LM) is a suite of programs for performing

stochastic biological simulations. Designed from the outset

to leverage heterogeneous computing systems that combine

traditional multi-core CPUs and GPUs, LM simulates well-

stirred reactions and spatially-resolved reaction-diffusion pro-

cesses with a focus on complex, realistic biological environ-

ments [15], [16] and supports single and multi-GPU hardware

platforms [17]. Due to its focus on heterogeneous computing

platforms, LM is an excellent candidate application to use

in testing emerging energy-efficient computing platforms that

combine multi-core ARM CPUs with high performance GPU

accelerators.

NAMD is a GPU-accelerated parallel molecular dynam-

ics simulation package that specializes in simulating large

biomolecular complexes [18]. NAMD is based on the

Charm++ runtime system, and is designed for execution on

workstations, clusters, and petascale computers [4], [11]. We

evaluate performance, energy efficiency, and GPU acceleration

factors for NAMD on the CARMA and KAYLA platforms,

and on a conventional Intel x86 platform.

VMD is a widely used tool for preparation, visualization,

and analysis of biomolecular and cellular simulations. VMD

was one of the very first molecular modeling applications to

employ GPUs for general purpose scientific computations [4],

and it incorporates a broad range of GPU-accelerated al-

gorithms. We explore the performance scaling and energy

efficiency of three of these algorithms and identify bottle-

necks that hinder performance and limit the potential energy

efficiency gains on the CARMA and KAYLA test platforms,

and we present kernel-level performance results for one of

the algorithms on all test platforms, including two Intel x86

system configurations.

We compare the performance and energy efficiency of these

scientific applications running on emerging platforms with

results obtained on traditional platforms, identify hardware and

algorithmic performance bottlenecks that affect the usability of

these platforms, and describe avenues for improving both the

hardware and applications in pursuit of the needs of future

exascale systems.

II. HARDWARE AND OPERATING SYSTEM OVERVIEW

We evaluate five heterogeneous computing platforms that

combine multi-core CPUs based on the ARM architecture with

on-chip, on-board, and add-in-board GPUs made by NVIDIA.

We performed rudimentary evaluation of the NVIDIA Jet-

son TK1 and Jetson TX1, and the AppliedMicro X-Gene. The

Jetson TK1 uses an NVIDIA Tegra K1 (32-bit) with an on-chip

integrated GPU based on the Kepler GPU architecture, the first

Tegra that is capable of running CUDA kernels natively in its

on-chip GPU. The Jetson TK1 ran Ubuntu 14.04 with GCC

4.8.2 and CUDA 6.5. The Jetson TX1 is similar to the TK1, but

is based on a newer Tegra X1 (64-bit) SoC capable of higher

clock rates. The Jetson TX1 ran developmental operating

system software limited to 32-bit addressing, based on Ubuntu

14.04 with GCC 4.8.4 and CUDA 7.0. The AppliedMicro

X-Gene is also one of the first 64-bit ARM CPUs. The X-

Gene host system ran an early developmental operating system

with 64-bit addressing, but which had a number of software

limitations relative to the other platforms. The X-Gene was

paired with an NVIDIA Tesla K20 discrete add-in-board GPU

for all tests, and used GCC 4.8.1 and the ARM64 version of

CUDA 6.5.

We evaluated two of the energy-efficient heterogeneous

computing platforms in much greater detail, both based on

the NVIDIA Tegra 3 system-on-chip (SoC), which utilize

32-bit ARM Cortex-A9 CPU cores and an NVIDIA GPU

accelerator. Both are single-board computers produced by

SECO: CARMA, a heterogeneous computing development

board with an on-board NVIDIA Quadro 1000M GPU, and

KAYLA, a development board with one PCIe x16 expansion

slot supporting a discrete add-in-board GPU accelerator. The

NVIDIA Tegra 3 SoC includes four high performance CPU

cores and a fifth low speed energy efficient CPU core for



use during idle periods. Tegra 3 supports ARM NEON 4-

way vector instructions, accessible through GCC compiler

intrinsics. Both development boards include SATA, ethernet,

on-board video, and serial I/O. Both development systems

were installed with Ubuntu 12.04 running a kernel supporting

the ARM hardware floating point ABI, and each of the

applications described were compiled using an ARM-native

compiler toolchain based on GCC 4.6.3, and the CUDA 5.5

toolkit for the ARM platform.

One of the key power efficiency features of the Tegra 3,

Tegra K1, Tegra X1, and many similar SoCs is the inclusion

of (one or multiple) CPU cores that are specialized for low-

speed, high-efficiency execution during idle periods. When

the system reaches a low utilization state, the hardware and

operating system cooperate to migrate processes and threads

off of the four high-performance CPU cores, and move them

to the energy-efficient CPU core(s). Once processes have been

migrated, the four main CPU cores are shut off, essentially

eliminating associated power consumption and leakage cur-

rent. This energy efficiency feature is particularly valuable

for mobile computing scenarios. One unusual implementation

detail that arises is that the operating system reports varying

numbers of both available and active CPUs through standard

POSIX operating system APIs. This behaviour is unusual

as compared to traditional HPC hardware platforms, and it

can confound existing scientific applications and numerical li-

braries which have been written to spawn a number of threads,

processes, or MPI ranks equal to the number of available CPUs

as reported by the operating system during the program’s

initialization. We have made appropriate modifications to each

of the applications we discuss below, thereby enabling them to

utilize all of the CPU cores, regardless of the system’s power

management state at the time the application is launched. It

seems likely that, as energy efficiency becomes an increasing

concern, future desktop computers and server platforms will

also employ mechanisms to shut down entire CPU cores as a

means of optimizing energy consumption.

Since the CARMA and KAYLA systems use the same

Tegra 3 SoC, but have different GPUs, they have very different

performance and power consumption characteristics, as shown

in Table I. Several performance tests were used to establish

basic performance and power consumption characteristics for

the two test platforms. Idle power consumption was measured

for both systems after booting into the Linux OS and allowing

them to become fully quiescent. Interactive VMD sessions

were run with and without CUDA GPU acceleration support,

and idle power consumption was measured. In all three idle

power consumption tests, the Linux OS shutdown the high-

performance CPU cores, migrating all threads to the low-

power fifth core. The idle power consumption shown for both

the “Linux idle” test and the non-GPU-accelerated VMD are

nearly identical, and these results match the minimum power

consumption observed from system power-on, prior to booting

Linux.

In contrast to the CPU-only idle power results above, a very

pronounced increase in idle power consumption was observed
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Fig. 2. PCI-Express transfer rates for host to device copies (solid lines), and
device to host copies (dashed lines) for the ARM SoC platforms tested. Also
shown is the transfer rate for a conventional Intel i7-3960X system with a
Tesla K20c GPU, demonstrating PCIe 2.0 x16 transfer rates of approximately
6 000MB/s, and an Intel i7-3960X system with a GeForce GTX TITAN,
demonstrating PCIe 3.0 x16 rates of 12 000MB/s. CARMA and KAYLA
obtain a top speed of 450MB/s, and X-Gene transfers at a maximum rate of
800MB/s. The Jetson TK1 and TX1 systems have unified memory systems
that support both the CPU and GPU, so memory copies don’t pass through
a PCIe bus. The Jetson TK1 is able to perform at speeds equivalent to
PCIe 2.0 x16; the TX1 falls short of full PCIe 3.0 x16 speed, but is the
best performer of all of the ARM SoC systems. For small data transfers,
performance is latency bound for the ARM systems. CARMA, KAYLA, TK1,
and TX1 all take over 180µs to perform a 1 kB copy. The X-Gene latency
improves upon these results dramatically completing the transfer in 12µs.
The Intel i7-3960X has the lowest PCIe overhead, completing the transfer in
as little as 4µs.

for the GPU-accelerated VMD-CUDA test case, with the idle

power increasing by factors of 1.6× (CARMA) and 2.76×
(KAYLA) over the “Linux idle” and non-GPU-accelerated

VMD idle tests. We examined this in detail and determined

that the significant increase in idle power consumption is

associated with the creation of a CUDA “context”, and that the

idle power consumption remains high even if the associated

process is stopped in the scheduler or otherwise blocked in

kernel wait. We found that idle power consumption remains

increased for as long as any process holds a CUDA context,

regardless of whether that process is considered “runnable”

by the scheduler or not. This behaviour is the result of the

GPU device driver initializing the GPU and raising it out of

the idle power state, presumably as a means of improving re-

sponsiveness and overall performance in the common scenario

where there are a series of CUDA kernel launches or host–

device memory copies interspersed among very brief periods

of GPU inactivity. The CUDA runtime system currently lacks a

mechanism to allow an application to indicate that it is entering



TABLE I
BASIC HARDWARE ATTRIBUTES AND POWER CONSUMPTION.

Test Case
CARMA, Quadro 1000M KAYLA, GeForce GTX Titan

Perf. Watts Energy Eff. Perf. Watts Energy Eff.

Linux idle - 11W - - 29W -
VMD text-mode, idle - 11W - - 30W -
VMD-CUDA text-mode, idle - 18W - - 80W -
STREAMBW-copy 1,090MB/s 13W 84MB/J 1,102MB/s 32W 34MB/J
CUDA-PCIEBW-pinned 449MB/s 20W 22MB/J 451MB/s 97W 4.6MB/J
CUDA-MEMBW 24,500MB/s 34W 720MB/J 241,000MB/s 201W 1,199MB/J
CUDA-MADD 175GFLOP/s 35W 5.0GFLOP/J 2,923GFLOP/s 202W 14.4GFLOP/J

an idle phase where the GPU could be placed into a minimum-

power idle state. If such a mechanism were added to CUDA,

the GPU driver would have the opportunity to significantly

improve the idle power consumption of GPU-accelerated ap-

plications that are interactive and must sometimes wait for

user input, and for applications that only utilize the GPU for

a subset of algorithms or workloads.

The remaining tests in Table I measured both perfor-

mance and power consumption associated with several CPU

and GPU microbenchmarks that measured peak CPU and

GPU memory bandwidths (STREAMBW-copy, and CUDA-

MEMBW), host–GPU PCIe transfer bandwidths (CUDA-

PCIEBW-pinned), and peak GPU single-precision multiply-

add arithmetic throughput (CUDA-MADD). Each of the

microbenchmarks used are implemented as built-in system

benchmarking routines in VMD. Power consumption mea-

surements were made for short-running tests, e.g. CUDA-

MADD, by running the tests continuously in a loop. For each

performance test, power consumption is reported in Watts, and

energy efficiency in terms of work units per Joule.

To better understand the PCIe performance of these systems,

Fig. 2 shows the achieved transfer bandwidth across a range of

payload sizes. An Intel i7-3960X system was used to evaluate

performance for GPUs connected to a host with PCIe 2.0 or

PCIe 3.0 link rates. All of the ARM-based platforms incur

substantially higher latencies for initiating small-size GPU

data transfers than the Intel i7-3960X platform. CARMA,

KAYLA, and the X-Gene are an order of magnitude less

performant for memory transfers than the Intel i7-3960X host.

The Jetson TK1 and TX1 systems perform considerably better,

likely due to their use of a unified memory architecture for

their CPUs and GPUs. The Jetson TK1 and TX1 are able

to achieve full bandwidth beginning with transfer sizes just

beyond 4MB.

III. POWER MONITORING APPROACH

We have taken two approaches for measuring power con-

sumption through the use of commercial AC power monitoring

devices, and with custom-made DC power monitoring cir-

cuits constructed from low-cost components and commercial

analog-to-digital conversion interfaces (A/D) or digital storage

oscilloscopes (DSOs).

The CARMA board contains an NVIDIA Tegra 3 SoC,

on-chip and on-board I/O peripherals, and an NVIDIA

Quadro 1000M GPU, all powered by main board circuit traces.

The CARMA board is powered by an external MeanWell

switching power supply that provides 19.0VDC at up to

4.74A (90W). Due to the lack of circuit diagrams, bus

extenders, or test probe cards for the custom daughter cards

containing the Tegra 3 and Quadro 1000M, power measure-

ments monitored system level power at the board-level DC

input, and at the AC input to the power supply. The CARMA

board and associated power monitoring instrumentation are

shown in the Fig.1 photograph. In the future, we plan to use the

same power monitoring approach taken for the CARMA board

for detailed application power profiling on the Jetson TK1,

Jetson TX1, and similar single-board systems that require only

low-voltage DC input power.

The KAYLA development board contains the NVIDIA

Tegra 3 SoC, on-chip and on-board I/O peripherals, and it

provides a single PCIe 2.0 x16 (physical) slot for discrete

GPUs with PCIe interfaces. The KAYLA main board obtains

power from an external ATX switching power supply through

a standard ATX motherboard power connector. The discrete

PCIe GPU installed in the KAYLA board obtains its power

from both the PCIe bus itself and additional PCIe GPU power

cables attached to the ATX power supply. In the present work

we have obtained measurements of the KAYLA AC power

input only. Accurate DC power monitoring for KAYLA, con-

ventional Intel x86 systems, the AppliedMicro X-Gene system,

and similar platforms would require multiple current sensors,

multi-channel A/D, and post-processing and calibration of per-

channel measurements, which we leave as future work.

Commercially available power monitoring devices provide

inexpensive means to measure overall system power con-

sumption at AC power supply inputs. AC power consumption

measurements were performed using a commercially made

Kill A Watt R© model p4400 meter, produced by P3 Inter-

national. The Kill A Watt meter provides readings that are

rated to 0.2% accuracy and AC measurements reported were

obtained by running workloads that yielded long-term constant

average power consumption readings enabling simple single-

value measurements to be made. Since hardware configura-

tions vary between the systems under test, e.g. different models

of SSDs, hard drives, and memory capacity, the Kill A Watt

provides more than sufficient accuracy to support the low-

temporal-resolution parts of the power efficiency evaluations

and conclusions presented in this work. Many alternative

commercial AC power monitoring solutions exist, but the

Kill A Watt devices are inexpensive and widely available, and



Fig. 3. Schematic of low-voltage DC power monitoring circuit based on
the Allegro Microsystems ACS 712 Hall-effect current sensor, and common
voltage regulator parts.

we have experience using them in previous power monitoring

of molecular modeling workloads on GPU clusters [6]. We

note that these approaches provided only coarse temporal

resolution on the order of one sample per-second, due to

limitations in the underlying commercial power monitoring

instrumentation itself.

We sought to be able to monitor power consumption with

very fine temporal resolution sufficient to resolve the power

consumption of individual GPU kernel functions. Ge et al. con-

structed sophisticated power monitoring infrastructure using

commercially available power monitoring components capable

of monitoring individual subsystems and components within

cluster nodes [19]. We note that in the case of platforms based

on SoC designs such as CARMA and KAYLA, it is difficult

or impossible to directly measure power consumption of on-

chip circuitry with external instrumentation, and that it may

only be practical to instrument outboard components such as

disks, and external GPUs.

To overcome the limitations of existing monitoring de-

vices, we built our own DC power monitoring instrumentation

combined with commercial A/D instruments and DSOs. Our

DC power monitoring hardware is composed of an Allegro

Microsystems ACS 712 Hall effect current sensor, powered by

either an LM7805 voltage regulator driven by a common 9V

battery, or a sufficiently low-noise 5V power supply, as shown

in Figs. 3, and 4. The reported results were obtained using

an Allegro ACS 712 rated for currents of up to 5A and total

error below 1.5%. The 5A model yields the best measurement

precision for the input voltages and currents required by the

SECO CARMA board under test. The 5A ACS 712 produces

an output voltage signal of 2.500V plus 185 mV/A of measured

current, which is measured by external A/D instrumentation or

a DSO. The peak frequency response or temporal resolution

provided by the ACS 712 is roughly 80 kHz, and it can be

set to a lower frequency by increasing filtering capacitor Cf

in Fig. 3. The output voltage of the ACS 712 is proportional

to its 5V supply, so low-noise measurements require a low-

noise power supply to the ACS 712. Our measurements were

conducted using a simple battery-driven LM7805 voltage

regulator to minimize noise and to avoid ground loops or other

undesirable coupling to the attached DSO or A/D instrumen-

tation, but good results can be achieved using any sufficiently

low-noise power supply.

The high sample rate power profiles presented in this paper

were obtained using a Labjack UE9 analog A/D interface and

Fig. 4. Photograph of our power monitoring circuit, connected to a networked
Labjack UE9 high speed analog-to-digital conversion interface.

a Rigol DS2102 100MHz digital storage oscilloscope. The

UE9 provides multi-channel A/D conversion and sample rates

up to 57,000 samples/s, depending on the number of channels

sampled and the required precision. We operate the UE9 in

a streaming mode, continuously sending A/D samples over

the network, allowing high-frequency power measurements to

be recorded for long running applications. The Rigol DS2102

DSO provides two input channels, and when set for maximum

recording time, can record at a rate of 1M samples/s for up to

1.4 s. The extremely high sample rate of the DS2102 exceeds

the frequency response of the ACS 712 sensor by over a

factor of ten, but multiple samples can be averaged to reduce

noise. The DSO was particularly useful for identifying and

eliminating power supplies that generated excessive ripple or

noise on their DC output.

Both the UE9 and DS2102 can be triggered by external

trigger signals or by software, but in the current work we

used software-based triggering. We developed C++ libraries

to drive both the Labjack UE9 and the Rigol DS2102, with

the aim of linking the software into existing CPU and GPU

performance profiling tools developed by others. To the best

of our knowledge, our DC power monitoring instrumentation

achieves a sampling rate higher than has been reported by

recent efforts. In many cases our sample rate is two orders of

magnitude higher, based on the limitations of the hardware

instrumentation described or specific sample rates reported

in each case [20], [19], [21], [22], [23], [24]. Our approach

is more limited in scope compared to more general power

monitoring frameworks due to the minimalistic nature of

the SoC-based CARMA and KAYLA hardware platforms we

study, and the complexities involved in monitoring outboard

PCIe GPU power consumption [23], [24].

IV. APPLICATION TEST CASES AND KEY ALGORITHMS

Test cases were selected for evaluation of the performance

and energy efficiency of the CARMA and KAYLA platforms

as compared with conventional workstation and cluster node

architectures based on 64-bit Intel and AMD processors.



The test cases were selected to determine whether particular

features of the hardware architecture or algorithms used in

the science applications exposed strengths or weaknesses in

relation to performance and energy efficiency.

A. Lattice Microbes

Several Lattice Microbes (LM) [15], [16], [17] test cases

were selected to exercise CPU and GPU implementations of

its stochastic solvers, providing direct comparison of energy

efficiency on the test architectures.

A serial process at the heart of the CME algorithm consumes

a profusion of GPU-generated random numbers to determine

if a reaction occurs, with a probability determined by the

“propensity matrix”, R. While algorithm execution is syn-

chronous, random number generation and data output occur

concurrently.

On the other hand, the lattice-based RDME algorithm enjoys

fine-grained parallelism as described by:

dP (~x, t)

dt
=

V∑

v

R∑

r

RP (~x, t) +
V∑

v∈V

±{î,ĵ,k̂}∑

v∈V

N∑

α

DP (~x, t)

(1)
The CME is solved independently on each lattice site (v ∈

V ), assuming that only the contained particles (α) can interact.

Inter-site (v ± {̂i, ĵ, k̂}) diffusion of particles–which occurs

with probability D–enjoys considerable spatial locality.

A bimolecular reaction, where two particles combine or

separate at rates k1 and k2, is a quintessential test case with

regular, predictable serial execution. To test ranges of bio-

logically relevant particle counts, simulations are run varying

the number of A and B particles at t0 from 1K–250K. Lattice

sizes for the bimolecular reactions are varied from 323 to 2563

(memory use between 256 kB and 512MB). Each lattice site

is 8 bytes in size and can store one particle per byte. The first

set of simulations begin with 1,000 A and B particles over all

lattice sizes. A second set of simulations scale the number of

A and B with the lattice size.

For simulating RDME processes, we employ our multi-

particle diffusion algorithm (MPD-RDME [15], [16]). The

algorithm is composed of four CUDA kernels on the GPU:

Three kernels perform x-, y-, and z-axis particle diffusion

and one kernel to perform reactions. The host then checks for

lattice site overflow events: The GPU overflow buffer must be

copied to host memory, and then if necessary, the host corrects

lattice overflows before beginning the next timestep. Beyond

overflow handling, the CPU does little more than schedule

GPU operations.

Figure 5 shows a high-resolution power profile for an

RDME timestep annotated with the GPU kernel that is being

executed. It is interesting to learn that the GPU utilization

and efficiency of the kernel are evident from examination of

power usage. The y- and z-axis kernels draw more power

than the other two, however their execution time is shorter.

This is consistent with the predicted GPU occupancy for

each kernel. The y- and z-axis kernels have an occupancy

of 66% whereas the occupancy of the x-axis and reaction
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Fig. 5. High-resolution power trace showing the CARMA platform running
Lattice Microbes RDME timestep on the 64

3 lattice. The y- and z-axis
diffusion kernels exhibit shorter run times and higher power usage than x-axis
diffusion and reaction kernels due to higher GPU occupancy.

kernels is 33%. Since they are less able to fully occupy the

GPU, the power draw is below peak. One can also determine

certain execution characteristics, such as the timestep length,

solely from high-resolution power measurements. This opens

the door for “black-box” instrumentation where execution

profiling can be performed without any source-level or runtime

modifications.

Table II shows RDME simulation rates, power usage,

and resulting efficiency for CARMA and KAYLA. Table III

compares a computer with an Intel i7-3960X processor and

a Tesla K20c against the Applied Micro X-Gene system

with the same GPU. Each successive lattice size requires

significantly more work; as the lattice edge length doubles,

the lattice volume increases by a factor of eight. MPD-RDME

workload scales linearly with the number of lattice sites and

with the number of particles and reactions present in the

simulation [17]. KAYLA, with the discrete GPU, outperforms

CARMA and is more energy efficient in all but the 323

lattice models. Lattice Microbes performance is predominantly

dependent on the GPU, and not the CPU. This is demon-

strated clearly with the comparison between the Intel-based

system and the X-Gene system where the GPU is identical.

The X-Gene system draws considerably less power than the

Intel system, but the application performance is similar. An

approximate 25% increase in energy efficiency is gained from

running on the ARM-based X-Gene platform.

For smaller simulations, especially on the CARMA and

KAYLA platforms, the PCIe bus plays a factor in performance.

The overflow buffer, which is 4 kB in size, is examined at the

end of every timestep to check for any particles that need

to be re-inserted into the simulation. Figure 2, shows that

the performance of the ARM-based systems lags considerably

behind the Intel i7-3960X for 4 kB transfers, with the X-Gene

performing the best among the ARM systems for transfers

below 64 kB. On CARMA and KAYLA, this copy takes

approximately 0.2ms. On the Intel system, it takes 0.03ms



TABLE II
LATTICE MICROBES RDME PERFORMANCE AND POWER EFFICIENCY FOR THE CARMA AND KAYLA ARM DEVELOPMENT BOARDS. SIMULATION

RATE VALUES ARE IN STEPS PER SECOND, POWER IN WATTS, AND EFFICIENCY VALUES ARE IN TIMESTEPS PER JOULE OF ENERGY EXPENDED.

Lattice Size Particles
CARMA, Quadro 1000M KAYLA, GeForce GTX Titan

Sim. Rate Power Efficiency Sim. Rate Power Efficiency

32
3

2, 000 726 steps/s 31W 23.4 steps/J 1304 steps/s 137W 9.5 steps/J

32
3

64, 000 169 steps/s 30W 5.6 steps/J 226 steps/s 143W 1.6 steps/J

64
3

2, 000 184 steps/s 34W 5.4 steps/J 1000 steps/s 158W 6.3 steps/J

64
3

128, 000 130 steps/s 34W 3.8 steps/J 863 steps/s 175W 4.9 steps/J

128
3

2, 000 27.9 steps/s 34W 0.82 steps/J 301 steps/s 193W 1.6 steps/J

128
3

256, 000 21.7 steps/s 34W 0.64 steps/J 253 steps/s 203W 1.2 steps/J

256
3

2, 000 3.50 steps/s 34W 0.10 steps/J 45.2 steps/s 205W 0.22 steps/J

256
3

512, 000 3.05 steps/s 35W 0.09 steps/J 40.4 steps/s 212W 0.19 steps/J

TABLE III
LATTICE MICROBES RDME PERFORMANCE AND POWER EFFICIENCY ON INTEL AND X-GENE ARM SYSTEMS, BOTH WITH A SINGLE TESLA K20C
GPU. COMPARABLE PERFORMANCE IS FOUND ON BOTH PLATFORMS, BUT THE X-GENE IS 25% MORE EFFICIENT FOR MANY OF THE TEST SYSTEMS.

Lattice Size Particles
Intel i7-3960X, Tesla K20c X-Gene, Tesla K20c

Sim. Rate Power Efficiency Sim. Rate Power Efficiency

32
3

2, 000 5463 steps/s 226W 24.2 steps/J 4638 steps/s 142W 32.6 steps/J

32
3

64, 000 1718 steps/s 229W 7.5 steps/J 744 steps/s 139W 5.4 steps/J

64
3

2, 000 1991 steps/s 247W 8.1 steps/J 1844 steps/s 166W 11.1 steps/J

64
3

128, 000 1343 steps/s 252W 5.2 steps/J 1265 steps/s 170W 7.4 steps/J

128
3

2, 000 417 steps/s 264W 1.6 steps/J 395 steps/s 186W 2.1 steps/J

128
3

256, 000 305 steps/s 266W 1.2 steps/J 300 steps/s 189W 1.6 steps/J

256
3

2, 000 58.9 steps/s 268W 0.22 steps/J 54.1 steps/s 192W 0.28 steps/J

256
3

512, 000 48.3 steps/s 270W 0.18 steps/J 47.7 steps/s 195W 0.24 steps/J

for the copy, and 0.05ms on the X-Gene. That is significant

overhead from PCIe latency for CARMA and KAYLA, espe-

cially for the small lattice sizes where the GPU kernel runtimes

are very short. On KAYLA, 323 lattice with 2, 000 particles

runs at 1, 304 steps per second; 23% of that runtime is copying

the overflow buffer. If ARM platforms supported host-mapped

memory, this copy could be entirely avoided.

Only the 323 lattice with 64, 000 particles simulation ex-

hibits overflows. Copying the lattice to host memory and back

to the device for overflow correction is costly when PCIe

bandwidth is low. On both CARMA and KAYLA, an average

of 3.5ms is spent on correcting overflows, accounting for 65%

of the runtime on CARMA and 87% on KAYLA, where the

GPU is not in use. This inefficiency is reflected in the relatively

poor performance reported for the 323/64, 000 simulation. The

dependence on CPU performance for overflow handling is also

apparent in comparing the Intel system to X-Gene for this

simulation. The Intel system is 2.3 times faster, and is the

only test model where the Intel system is superior in terms of

energy efficiency.

CME is primarily implemented on the CPU, and is accel-

erated by the GPU by offloading random number generation.

This partitioning keeps a CPU core busy but does not keep

the GPU consistently busy; as a result multiple independent

CME replicas can be simultaneously run on multiple CPUs

while sharing a single GPU. We initially observed very poor

performance when multiple replicas shared the GPU on both

the CARMA and KAYLA platforms. Upon inspection, the

majority of the time spent the GPU spent copying the random

numbers to the host due to the low PCIe bandwidth. Delayed

completion of memory copies due to bus contention would

occasionally make the CME threads stall until more random

numbers could be produced, even though the actual generation

is very quick. We reduced the amount of data that needed

to be transferred by reducing the batch size for the random

number generation, which reduced contention. This requires

the kernel to be called more often, however these calls are

fully overlapped with the CPU computation.

The CARMA platform executes the random number kernel

in 1.7ms, and the KAYLA platform with the GTX Titan

in 252µs for a batch of 256K double-precision numbers.

The random number generation kernel produces data at rates

of 1.2GB/s and 7.9GB/s respectively, while the observed

bandwidth for device-to-host memory transfers is roughly

450MB/s, further demonstrating the imbalance between com-

putation and communication efficiency on these hardware

platforms.

B. NAMD

Porting NAMD and the Charm++ runtime system to the

ARM architecture initially took roughly two days of effort.

One limitation of existing ARM platforms with respect to

support for the NVIDIA CUDA toolkit and driver is the lack of

support for host-mapped memory, which is normally used to

implement a low-latency mechanism to inform the Charm++

runtime system running on the host CPUs when GPU work

units have completed. By having GPU kernels writing work

completion status to host-mapped memory, it becomes possible

for CPU-side operations on GPU output to begin sooner than

if they had to wait for enqueued GPU kernels to complete.



Fig. 7. Execution of NAMD running ApoA1 benchmark. Top: CARMA (Quadro 1000M). Bottom: KAYLA (GeForce GTX Titan). Both figures span 5.5
seconds. CARMA corresponds to Fig. 6; note PME work indicated in green. GPU execution is indicated by violet bands above P2 traces. Note that GPU is
mostly busy on CARMA (top), mostly idle on KAYLA (bottom). Integration (red blocks) is split into two blocks per timestep on CARMA (top), corresponding
to separate GPU grid completions, while on KAYLA (bottom) these blocks appear merged because GPU results are available before CPU is idle. Traces
generated with Projections tool for Charm++ parallel runtime system.
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Fig. 6. Measured power consumption of NAMD running ApoA1 benchmark.
Timestep boundaries are marked by shaded bands. Steps correspond to Fig. 7.
Step 0 is preceded by atom migration; steps 0, 4, 8, and 12 include PME long-
range electrostatics; steps 0 and 12 also include pairlist regeneration; all other
steps calculate short-range forces only. The GPU calculation for each step is
divided into two grids, with the boundaries between grids visible as brief
drops in power usage.

The lack of support for host-mapped memory on the ARM

platform is the result of limitations in the implementation of

PCIe transfers and interaction with the ARM CPU caches, and

is therefore unlikely to change in the near future.

NAMD decomposes its simulation work across the available

CPUs and GPU accelerators, moving the most demanding non-

bonded force calculations onto the GPU, and performing com-

paratively low-cost bond, angle, dihedral, and improper force

terms on the host CPU(s). As a result of the decomposition of

force computations across both the CPU and GPU hardware,

NAMD must perform frequent host-device memory transfers

to exchange atom positions, forces, and energies between the

GPU and the host. One of the hardware limitations of the

CARMA and KAYLA platforms that has a strong impact on

TABLE IV
NAMD POWER EFFICIENCY ACROSS PLATFORMS.

Platform Time/step Power Steps/kJ Speedup

CARMA (Q 1000M) 0.350 s 34W 84 4.3X
KAYLA (GT 640) 0.267 s 45W 83 6.2X
KAYLA (GTX Titan) 0.283 s 93W 38 5.9X
i7-3960X (GTX Titan) 0.0185 s 444W 122 5.8X

the performance of these transfers is the PCIe host-device

transfer bandwidth, as reported in the CUDA-PCIEBW-pinned

tests shown in Table I, and plotted in Fig. 2.

We chose to test NAMD on a moderately sized ApoA1

system because it represents a typical per-node workload for

GPU-accelerated systems, and it was used as a test case in our

previous work [11]. Power and performance results are shown

in Figs. 6 and 7, and in Table IV. For NAMD, driving the GPU

with a high-performance CPU maximizes power efficiency as

well as performance.

C. VMD

VMD is a GPU-accelerated tool for preparing, analyzing,

and visualizing molecular dynamics simulations [25], [4].

VMD has recently been extended with features for visualiza-

tion and analysis of cellular simulations [16], and has been

adapted for parallel analysis and visualization of large scale

simulation trajectories on petascale computers [26], [27], [28],

[29], [30], [31].

The main limitation of the CARMA and KAYLA hardware

that impacts the performance and energy efficiency of the

VMD algorithms we evaluate is the PCIe host-GPU transfer

bandwidth, as reported in the CUDA-PCIEBW-pinned tests

shown in Table I, and plotted in Fig. 2. Below, we find that

this limitation, as with the NAMD benchmarks, has a profound

impact on the performance scaling of the GPU algorithms

in VMD. This is due in part to the fact that our algorithm

designs assumed high-bandwidth PCIe connectivity, and long-

term storage of visualization data structures in comparatively



TABLE V
VMD PERFORMANCE POWER CONSUMPTION MEASUREMENTS.

Test Case
CARMA, Quadro 1000M KAYLA, GeForce GTX Titan

Perf. Watts Energy Eff. Perf. Watts Energy Eff.

C60 orbital calc+viz (orig. alg.) 1.43 frames/s 26W 55 frames/kJ 2.12 frames/s 88W 24 frames/kJ
C60 orbital calc+viz (new alg.) 2.62 frames/s 26W 100 frames/kJ 3.89 frames/s 89W 49 frames/kJ
Ankryin surface calc+viz 0.49 frames/s 22W 22 frames/kJ 0.61 frames/s 86W 7.1 frames/kJ
STMV electrostatic potential map 13.41 s/frame 35W 2.12 frames/kJ 12.05 s/frame 102W 0.81 frames/kJ

large size host memory, thereby enabling GPU memory to be

used for detailed renderings of petascale trajectories [27]. Sur-

veying the attributes of other recently announced and currently

available ARM SoCs, we find that all of the existing platforms

have limitations on PCIe bandwidth, with none providing

more than 8-lane PCIe 2.0 bandwidth to our knowledge. This

observation leads us to conclude that in order to obtain best

performance from similar platforms, we must begin to adapt

our existing visualization and analysis algorithms to reduce

dependencies on high-bandwidth host-GPU transfers. Below

we demonstrate the potential performance gains that can be

achieved by redesigning our molecular orbital visualization

algorithm to reduce host-GPU transfers.

We evaluated the performance of an electrostatics algo-

rithm [32] that has been evaluated previously on conventional

GPU-accelerated platforms [6], and GPU-accelerated algo-

rithms for visualization of molecular orbitals [33], [34] and

molecular surfaces [35], [27]. Table V lists the performance

results and energy efficiency for each of the tests measured

on the CARMA and KAYLA boards. In all three of the VMD

test cases, performance results were adversely affected by the

very limited PCIe bandwidth.

The “STMV electrostatic potential” test case computed a 3-

D electrostatic potential map for satellite tobacco mosaic virus,

using the multilevel summation method [32]. Performance of

the electrostatic potential test case was limited by significant

3-D potential interpolation work that is not currently GPU-

accelerated. The interpolation work was previously an incon-

sequential component of overall runtime, but the high speed of

the CARMA and KAYLA GPUs relative to Tegra 3 SoC makes

this algorithm step a significant performance bottleneck.

The C60 molecular orbital visualization test case stresses

both the CUDA molecular orbital kernels, and the subsequent

marching cubes stage that extracts the orbital surface and

creates the triangle mesh for rendering via OpenGL. Two

molecular orbital algorithms were tested with the C60 case.

The C60 “orig. alg.” case presents performance and efficiency

data for our original GPU-accelerated molecular orbital al-

gorithm [33], [34]. The C60 “new alg.” case presents results

for a revised algorithm, designed to overcome the extremely

limited bandwidth of host-GPU PCIe transfers, by moving

the marching cubes algorithm from the CPU (per the original

algorithm), entirely onto the GPU, resulting in a 1.8× increase

in performance and energy efficiency for the C60 test case on

both test platforms.

The “Ankyrin molecular surface” test case computes and

visualizes molecular surfaces for an Ankyrin unfolding sim-

ulation. The VMD molecular surface algorithm used in the

performance tests already implements the same optimization

described for the C60 molecular orbital test case above,

however the final stages of the Ankyrin molecular surface

test case generate a much larger triangle mesh, demonstrating

that even a highly streamlined GPU algorithm can succumb

to performance bottlenecks caused by low host-GPU transfer

bandwidth. The final host-GPU transfer could be eliminated

from the molecular surface algorithm assuming that the GPU

had sufficient memory capacity for both intermediate data

structures and the resulting triangle mesh, but all current GPU

hardware falls short in this respect.

An exciting development in the field of molecular visual-

ization is the recent availability of commodity head mounted

displays (HMDs) which are an ideal platform for immer-

sive stereoscopic visualization of large biomolecular com-

plexes [36], [37], [38]. The GPU workloads associated with

rasterization or ray tracing of very large biomolecular com-

plexes are currently beyond the capabilities of the platforms

discussed in this paper, but they appear to be capable of

supporting remote visualization schemes where remote super-

computers render omnidirectional stereoscopic projections at

very high resolution and stream the results to remote clients,

which perform local view-dependent reprojection and display

for the user’s HMD orientation [31], [38]. Rudimentary perfor-

mance tests were performed on the CARMA and Jetson TK1

SoC platforms, which are physically small and have a low

enough power requirement that they could potentially be self-

contained to drive commodity HMDs. The performance results

for these tests indicate that the CARMA and Jetson TK1 can

easily perform the required omnidirectional image reprojection

tasks using OpenGL. The test platforms were able to perform

omnidirectional texture mapping reprojection and HMD lens

distortion corrections at frame rates exceeding 150Hz when

driving a display at 1920 × 1080 resolution, with sufficient

performance headroom that we believe that the rasterization

part of the workload will not impede the use of these platforms

for driving HMDs for remote rendering. The remaining com-

ponents of the workload include H.264 video stream decoding,

which could in principle be handled by on-chip video decoding

hardware present on the NVIDIA Tegra 3 and Tegra K1

SoCs. We leave the evaluation of H.264 video stream decode

performance as future work.

V. RESULTS DISCUSSION AND HARDWARE OUTLOOK

The CARMA and KAYLA test platforms that we have

evaluated in detail above combine low-power NVIDIA Tegra 3

ARM SoCs which are commonly incorporated into mobile

phones and tablet computing devices with GPUs that achieve



Fig. 8. Photograph of NVIDIA/SECO CARMA and KAYLA, NVIDIA Jet-
son TK1, and AppliedMicro X-Gene test platforms used for the performance
comparisons in Table VI. The CARMA board is shown in the top center,
KAYLA and GeForce 640 in lower left, two Jetson TK1s are shown at bottom,
the AppliedMicro X-Gene system is shown at right, with a Jetson TX1 sitting
on top of it.

TABLE VI
COMPARISON OF VMD MOLECULAR ORBITAL KERNEL PERFORMANCE.

Hardware platform, CPU, and GPU
VMD molecular orbital
kernel runtime for C60

CARMA Tegra 3, Quadro 1000M 2.170 s
Jetson TK1 Tegra K1 2.020 s
Jetson TX1 Tegra X1 (beta software) 1.210 s
KAYLA Tegra 3, GeForce 640 0.989 s
KAYLA Tegra 3, GeForce Titan 0.396 s
Applied Micro X-Gene, Tesla K20c 0.243 s
Intel Core i7-3960X, Tesla K20c 0.208 s
Intel Core i7-3960X, GeForce Titan 0.157 s

substantially higher aggregate performance, albeit with in-

creased power consumption. The net energy efficiency benefits

obtained from the use of such platforms depends critically

on how effectively the high-performance and high-power con-

sumption parts of the system are utilized.

In the case of the platforms we evaluated, we have shown

that it is critical for the GPU hardware to be fully utilized in

order to achieve best energy efficiency. One of the limitations

we observed in the performance of the CARMA and KAYLA

development boards is that the Tegra 3 ARM SoCs on these

systems lack full PCIe 2.0 x16 bus bandwidth, creating a

performance bottleneck for some algorithms, particularly those

that regularly exchange large datasets between the CPU and

the GPU during the course of execution. In light of these

observations, we revised the GPU-accelerated molecular or-

bital algorithm in VMD to avoid host-GPU transfers between

algorithm stages, thereby achieving a 1.8× performance and

energy efficiency improvement for the C60 test case on both

the CARMA and KAYLA platforms.

While the CARMA and KAYLA platforms we study in

detail provide relatively low host-GPU transfer rates, limi-

tations on PCIe bandwidth are also common among several

more recently announced ARM platforms, including server-

oriented processors such as the AppliedMicro X-Gene, and

the AMD A1100. One potential resolution to PCIe bandwidth

limitations would be the incorporation of support for GPU

I/O buses such NVIDIA’s NVLink into ARM SoCs, thereby

enabling an alternative data path for host-GPU transfers, but

it is unclear if this is economically viable in low-cost mass

market SoCs. New on-chip and die-stacked memory systems

have begun to debut in discrete GPUs from AMD and have

been announced by NVIDIA, increasing GPU global memory

bandwidths by up to 4× relative to the GeForce GTX Titan

used in the KAYLA and Intel i7-3960X benchmarks reported

here.

We expect that upcoming 64-bit ARM SoCs will begin

to address some of performance bottlenecks reported here,

making them interesting targets for future evaluation. We have

recently begun porting and testing efforts on the NVIDIA Jet-

son TK1 (32-bit Tegra K1 SoC), Jetson TX1 (64-bit Tegra X1

running 32-bit operating system software), and AppliedMicro

X-Gene (64-bit). While the ARM SoCs share many of the

same design attributes and performance issues we have already

described based on our testing of the CARMA and KAYLA

development boards, they have improved CPU clock rates,

increased PCIe bandwidths, and they support newer versions

of the CUDA compiler toolchain and drivers. The two models

of Jetson boards will provide a new opportunity to evaluate

heterogeneous platforms that provide a unified memory system

that is shared by both the CPU and GPU, thereby potentially

eliminating the need for explicit data transfers between host

memory and GPU memory in many cases.

We have performed additional early testing on NVIDIA Jet-

son TK1 and TX1, and AppliedMicro X-Gene test platforms,

albeit limited to tests that could be performed on the X-Gene

system which has no display output and comparatively mini-

malistic operating system software. The results in Table VI

(photo of systems shown in Fig. 8) compare performance

for just the molecular orbital computation phase of the C60

molecular orbital visualizations described previously. The best

performing ARM platform is the X-Gene system, which is

limited to PCIe 2.0 x8 transfer rates, but achieves the best

combination of GPU kernel performance and low latency for

small size CPU-GPU data transfers. We compared the perfor-

mance of the ARM platforms against the Intel i7-3960X CPU,

which operates at a much higher clock rate than the ARM

systems and also benefits from full-bandwidth PCIe 3.0 x16

GPU connectivity and substantially lower latency for small

CPU-GPU data transfers.

The results in Table VI show performance that strongly

correlates with the speed of the attached GPU and the peak

host-GPU transfer bandwidth provided by each platform,

shown in Fig. 2. The Intel i7-3960X system paired with the

GeForce GTX Titan gains a significant additional performance

boost due to its much higher PCIe 3.0 x16 host-GPU transfer

bandwidth, combined with low latency for small transfers. We

note that the Jetson TK1 achieved performance comparable to

that of CARMA, and the Jetson TX1 was close behind the

KAYLA platform paired with the GeForce 640, both using

only the SoCs on-chip integrated GPUs in each case. We

expect that future tests with detailed power monitoring of

the Jetson TK1 and Jetson TX1 may demonstrate significant

increases in energy efficiency compared with CARMA and

KAYLA. The AppliedMicro X-Gene performs competitively

with the Intel i7-3960X given the substantial host-GPU PCIe



transfer bandwidth advantage enjoyed by the i7-3960X. At the

time of writing, the X-Gene platform and operating system

don’t support a windowing system or graphics output, but we

expect that if it did, that the overall C60 molecular orbital

visualization performance would likely track the performance

ratio we observe for the molecular orbital kernel since the

visualization performance is also impacted affected by PCIe

bandwidth and transfer latency. We look forward to repeating

tests on the AppliedMicro X-Gene and Jetson TX1 with future

operating system software that is more mature and robust. It

is possible that the relatively large latencies that we observed

for small-size CPU-GPU transfers will be addressed with

improved operating system software and CUDA GPU kernel

drivers.

VI. CONCLUSIONS

We have evaluated the performance of key computational

biology applications on several emerging heterogeneous com-

puting platforms that combine energy-efficient multi-core

ARM CPUs with massively parallel GPU accelerators. The

25% energy efficiency increase obtained for the Lattice Mi-

crobes application running on the AppliedMicro X-Gene and

NVIDIA Tesla K20c GPU was the most successful among our

tests in terms of demonstrating the potential for ARM-based

heterogeneous computing platforms to achieve significant en-

ergy efficiency gains for molecular and cellular simulation

workloads. Our performance tests and analysis have shown

areas where existing energy-efficient SoCs have architectural

limitations that impact performance of molecular modeling

applications, and we have demonstrated that careful adaptation

or redesign of GPU-accelerated application kernels can help

reduce the impact of such limitations on performance. We have

presented power monitoring instrumentation that allows highly

detailed snapshots of heterogeneous computing kernels and

their power consumption behavior, correlated with individual

GPU kernels. We have provided early results from benchmarks

of molecular orbital kernels on two of the latest ARM SoCs,

giving us a perspective of how future systems may evolve and

the level of performance that we can hope to achieve as the

platforms mature.
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